980 resultados para laser induce damage mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND In experimental animal studies, pulsing the CO2 laser beam has been shown to reduce the thermal damage zone of excised oral mucosal tissue. However, there is still controversy over whether this is borne out under clinical conditions. OBJECTIVE To compare the outcome following excisional biopsies of fibrous hyperplasias using a pulsed (cf) versus a continuous wave (cw) CO2 laser mode regarding the thermal damage zone, duration of surgeries, intra- and postoperative complications, postoperative pain sensation, scarring and/or relapse during the initial 6 months. MATERIALS AND METHODS One hundred Swiss-resident patients with a fibrous hyperplasia in their buccal mucosa were randomly assigned to the cw mode (5 W) or the cf mode (140 Hz, 400 microseconds, 33 mJ, 4.62 W) group. All excisions were performed by one single oral surgeon. Postoperative pain (2 weeks) was recorded by visual analogue scale (VAS; ranging from 0 to 100). Intake of analgesics and postoperative complications were recorded in a standardized study form. The maximum width of the collateral thermal damage zone was measured (µm) in excision specimens by one pathologist. Intraoral photographs at 6-month follow-up examinations were evaluated regarding scarring (yes/no). RESULTS Median duration of the excision was 65 seconds in the cw and 81 seconds in the cf group (P = 0.13). Intraoperative bleeding occurred in 16.3% of the patients in the cw and 17.7% of the cf group. The median value of the thermal damage zone was 161(±228) μm in the cw and 152(± 105) μm in the cf group (P = 0.68). The reported postoperative complications included swelling in 19% and minor bleeding in 6% without significant differences between the two laser modes. When comparing each day separately or the combined mean VAS scores of both groups between Days 1-3, 1-7, and 1-15, there were no significant differences. However, more patients of the cw group (25%) took analgesics than patients of the cf group (9.8%) resulting in a borderline significance (P = 0.04). Scarring at the excision site was found in 50.6% of 77 patients after 6 months, and more scars were identified in cases treated with the cf mode (P = 0.03). CONCLUSIONS Excision of fibrous hyperplasias performed with a CO2 laser demonstrated a good clinical outcome and long-term predictability with a low risk of recurrence regardless of the laser mode (cf or cw) used. Scarring after 6 months was only seen in 50.6% of the cases and was slightly more frequent in the cf mode group. Based on the findings of the present study, a safety border of 1 mm appears sufficient for both laser modes especially when performing a biopsy of a suspicious soft tissue lesion to ensure a proper histopathological examination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Out-of-body experiences (OBEs) are illusory perceptions of one's body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient's behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient's symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to investigate the effect of different energy settings of Er:YAG laser irradiation on dentin surface morphology with respect to the number of opened dentinal tubules. BACKGROUND DATA An ideally prepared dentin surface with opened dentinal tubules is a prerequisite for adhesive fixation. No study, however, has yet compared the numbers of opened dentinal tubules with regard to statistical differences. METHODS Conventional preparations using a bur with or without additional acid etching acted as control groups. Dentin specimens were prepared from human third molars and randomly divided into eight groups according to the energy settings of the laser (1, 1.5, 4, 6, 7.5, and 8 W) and two controls (bur and bur plus acid etching). After surface preparation, dentin surfaces were analyzed with a scanning electron microscope, and the number of opened dentinal tubules in a defined area was counted. RESULTS The control groups showed smooth surfaces with (bur plus acid etching) and without opened dentinal tubules (bur), whereas all laser-irradiated surfaces showed rough surfaces. Using the energy setting of 4 W resulted in significantly more opened dentinal tubules than the conventional preparation technique using the bur with additional acid etching. In contrast, the energy setting of 8 W showed significantly fewer opened dentinal tubules, and also exhibited signs of thermal damage. CONCLUSIONS The Er:YAG laser with an energy setting of 4 W generates a dentin surface with opened dentinal tubules, a prerequisite for adhesive fixation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-cage housing systems for laying hens such as aviaries provide greater freedom to perform species-specific behavior and thus are thought to improve welfare of the birds; however, aviaries are associated with a high prevalence of keel bone damage (fractures and deviations), which is a major welfare problem in commercial laying hens. Potential causes of keel bone damage are falls and collisions with internal housing structures that occur as birds move between tiers or perches in the aviary. The aim of this study was to investigate the scope for reducing keel bone damage by reducing falls and collisions through modifications of aviary design. Birds were kept in 20 pens in a laying hen house (225 hens per pen) that were assigned to four different treatments (n = 5 pens per treatment group) including (1) control pens and pens modified by the addition of (2) perches, (3) platforms and (4) ramps. Video recordings at 19, 22, 29, 36 and 43 weeks of age were used to analyze controlled movements and falls (including details on occurrence of collision, cause of fall, height of fall and behavior after fall) during the transitional dusk and subsequent dark phase. Palpation assessments (focusing on fractures and deviations) using 20 focal hens per pen were conducted at 18, 20, 23, 30, 37, 44, 52 and 60 weeks of age. In comparison to the control group, we found 44% more controlled movements in the ramp (P = 0.003) and 47% more controlled movements in the platform treatments (P = 0.014) as well as 45% fewer falls (P = 0.006) and 59% fewer collisions (P < 0.001) in the ramp treatment. There were no significant differences between the control and perch treatments. Also, at 60 weeks of age, 23% fewer fractured keel bones were found in the ramp compared with the control treatment (P = 0.0053). After slaughter at 66 weeks of age, no difference in keel bone damage was found between treatment groups and the prevalence of fractures increased to an average of 86%. As a potential mechanism to explain the differences in locomotion, we suggest that ramps facilitated movement in the vertical plane by providing a continuous path between the tiers and thus supported more natural behavior (i.e. walking and running) of the birds. As a consequence of reducing events that potentially damage keel bones, the installation of ramps may have reduced the prevalence of keel fractures for a major portion of the flock cycle. We conclude that aviary design and installation of specific internal housing structures (i.e. ramps and platforms) have considerable potential to reduce keel bone damage of laying hens in aviary systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung damage is a common side effect of chemotherapeutic drugs such as bleomycin. This study used a bleomycin mouse model which simulates the lung damage observed in humans. Noninvasive, in vivo cone-beam computed tomography (CBCT) was used to visualize and quantify fibrotic and inflammatory damage over the entire lung volume of mice. Bleomycin was used to induce pulmonary damage in vivo and the results from two CBCT systems, a micro-CT and flat panel CT (fpCT), were compared to histologic measurements, the standard method of murine lung damage quantification. Twenty C57BL/6 mice were given either 3 U/kg of bleomycin or saline intratracheally. The mice were scanned at baseline, before the administration of bleomycin, and then 10, 14, and 21 days afterward. At each time point, a subset of mice was sacrificed for histologic analysis. The resulting CT images were used to assess lung volume. Percent lung damage (PLD) was calculated for each mouse on both the fpCT (PLDfpcT) and the micro-CT (PLDμCT). Histologic PLD (PLDH) was calculated for each histologic section at each time point (day 10, n = 4; day 14, n = 4; day 21, n = 5; control group, n = 5). A linear regression was applied to the PLDfpCT vs. PLDH, PLDμCT vs. PLDH and PLDfpCT vs. PLDμCT distributions. This study did not demonstrate strong correlations between PLDCT and PLDH. The coefficient of determination, R, was 0.68 for PLDμCT vs. PLDH and 0.75 for the PLD fpCT vs. PLDH. The experimental issues identified from this study were: (1) inconsistent inflation of the lungs from scan to scan, (2) variable distribution of damage (one histologic section not representative of overall lung damage), (3) control mice not scanned with each group of bleomycin mice, (4) two CT systems caused long anesthesia time for the mice, and (5) respiratory gating did not hold the volume of lung constant throughout the scan. Addressing these issues might allow for further improvement of the correlation between PLDCT and PLDH. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death is an anticancer mechanism utilized by p53 that when disrupted can accelerate tumor development in response to oncogenic stress. Defects in the RB tumor suppressor cause aberrant cell proliferation as well as apoptosis. The combinatorial loss of the p53 and RB pathways is observed in a large percentage of human tumors. The E2F family of transcription factors primarily mediates the phenotype of Rb loss, since RB is a negative regulator of E2F. Contrary to early expectations, it has now been shown that the ARF (alternative reading frame) tumor suppressor is not required for p53-dependent apoptosis in response to deregulation of the RB/E2F pathway. In this study, we demonstrate that ATM, known as a DNA double-strand break (DSB) sensor, is responsible for ARF-independent apoptosis and p53 activation induced by deregulated E2F1. Moreover, NBS1, a component of the MRN DNA repair complex, is also required for E2F1-induced apoptosis and apparently works in the same pathway as ATM. We further found that endogenous E2F1 and E2F3 both play a role in apoptosis and ATM activation in response to inhibition of RB by the adenoviral E1A oncoprotein. We demonstrate that, unlike deregulated E2F3 and Myc, ATM activation by deregulated E2F1 does not involve the induction of DNA damage, autophosphorylation of ATM on Ser 1981, a marker of ATM activation by DSB, but does depend on the presence of NBS1, suggesting that E2F1 activates ATM in a different manner from E2F3 and Myc. Results from domain mapping studies show that the DNA binding, dimerization, and marked box domains of E2F1 are required to activate ATM and stimulate apoptosis but the transactivation domain is not. This implies that E2F1's DNA binding and interaction with other proteins through the marked box domain are necessary to induce ATM activation leading to apoptosis but transcriptional activation by E2F1 is dispensable. Together these data suggest a model in which E2F1 activates ATM to phosphorylate p53 through a novel mechanism that is independent of DNA damage and transcriptional activation by E2F1.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian COP9 signalosome, which connects signaling with the ubiquitin-mediated proteasome degradation pathway, is implicated in cell cycle regulation and DNA damage response. However, whether COP9 is dysregulated in cancers has not been well established. Here, we showed that COP9 subunit 6 (CSN6) was upregulated in malignant breast and thyroid tumors and positively correlated with MDM2 expression. Investigation of the underlying mechanism suggested that CSN6 stabilized MDM2, thereby accelerating the degradation of p53. We generated mice carrying a targeted disruption of the Csn6 gene, and found that the mice with both alleles disrupted (Csn6-/- ) died in early embryogenesis (E7.5). Csn6+/- mice were sensitized to undergo γ-radiation-induced p53-dependent apoptosis in both thymus and developing central nervous system. Consequently. Csn6 +/- mice were more susceptible to the lethal effects of high-dose γ-radiation than wild-type mice. Notably, Csn6+/- mice were less susceptible to γ-radiation-induced tumorigenesis and had better long-term survival after low-dose γ-radiation exposure compared with wild-type animals, indicating that loss of CSN6 enhanced p53-mediated tumor suppression in vivo. In summary, the regulation of MDM2-p53 signaling by CSN6 plays a significant role in DNA damage-mediated apoptosis and tumorigenesis, which suggests that CSN6 may potentially be a valuable diagnostic marker for cancers with a dysregulated MDM2-p53 axis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dermal exposure to jet fuel suppresses the immune response. Immune regulatory cytokines, and biological modifiers, including platelet activating factor, prostaglandin E2, and interleukin-10 have all been implicated in the pathway leading to immunosuppression. It is estimated that approximately 260 different hydrocarbons are found in JP-8 (jet propulsion-8) jet fuel, and the identity of the immunotoxic compound is not known. The recent availability of synthetic jet fuel (S-8), which is devoid of aromatic hydrocarbons, made it feasible to design experiments to test the hypothesis that the aromatic hydrocarbons are responsible for jet fuel induced immune suppression. Applying S-8 to the skin of mice does not up-regulate the expression of epidermal cyclooxygenase-2 nor does it induce immune suppression. Adding back a cocktail of 7 of the most prevalent aromatic hydrocarbons found in jet fuel to S-8 up-regulated cyclooxygenase-2 expression and induced immune suppression. Cyclooxygenase-2 induction can be initiated by reactive oxygen species (ROS). JP-8 treated keratinocytes increased ROS production, S-8 did not. Antioxidant pre-treatment blocked jet fuel induced immune suppression and cyclooxygenase-2 up-regulation. Accumulation of reactive oxygen species induces oxidant stress and affects activity of ROS sensitive transcription factors. JP-8 induced activation of NFκB while S-8 did not. Pre-treatment with antioxidants blocked activation of NFκB and parthenolide, an NFκB inhibitor, blocked jet fuel induced immune suppression and cyclooxygenase-2 expression in skin of treated mice. p65 siRNA transfected keratinocytes demonstrated NFκB is critically involved in jet fuel induced COX-2 expression. These findings clearly implicate the aromatic hydrocarbons found in jet fuel as the agents responsible for inducing immune suppression, in part by the production of reaction oxygen species, NFκB dependent up-regulation of cyclooxygenase-2, and the production of immune regulatory factors and cytokines. ^