976 resultados para laser field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in the development of XUV lasers by research teams using high-power and ultrashort-pulse Nd:glass and KrF laser facilities at the Rutherford Appleton Laboratory is reviewed. Injector-amplifier operation and prepulse enhanced output of the Ge XXIII collisional laser driven by a kilojoule glass laser, enhanced gain in CVI recombination with picosecond CPA drive pulses from a glass laser, and optical field ionization and XUV harmonic generation with a KrF CPA laser are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From measurements of spatial coherence and beam divergence of Ge soft x-ray laser at a far field, the x-ray laser beam has been characterized as a partially coherent Gaussian beam. Double-pass amplification will improve spatial and temporal coherence, spectral brightness and efficiency. Close to 100% geometrical coupling efficiency has been obtained in double pass amplification in Ge. Transient loss of feedback is attributed to mirror structure damage within the build-up time of the x-ray laser. Prospect for generation of coherent x-ray laser beam is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of schemes involving multiple laser pulses to enhance and control the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets is discussed. Specifically, the schemes include the use of a second laser pulse to produce and control preplasma expansion of the target to enhance energy coupling to the proton beam; the use of a second laser pulse to drive shock deformation of the target to change the direction of the proton beam; and a scheme involving dual high intensity laser pulses to change the properties of the sheath field, with the aim of modifying the proton energy spectrum. An overview of our recent experimental and theoretical results is given. The overall aim of this work is to determine the extent to which the properties of the sheath-accelerated proton beam can be optically controlled, to enable beam delivery at high repetition rates. To cite this article: D.C. Carroll et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the state of the art for high power laser systems increases from terawatt to petawatt level and beyond, a crucial parameter for routinely monitoring high intensity performance is laser spot size on a solid target during an intense interaction in the tight focus regime ( 10(19) Wcm(-2) is demonstrated experimentally and shown to provide the basis for an effective focus diagnostic. Importantly, this technique is also shown to allow in-situ diagnosis of focal spot quality achieved after reflection from a double plasma mirror setup for very intense high contrast interactions (> 10(20) Wcm(-2)) an important application for the field of high laser contrast interaction science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report spatially and temporally resolved measurements of self-generated multi-megagauss magnetic fields produced during ultrahigh intensity laser plasma interactions. Spatially resolved measurements of the magnetic fields show an asymmetry in the distribution of field with respect to the angle of laser incidence. Temporally resolved measurements of the self-generated third harmonic suggest that the strength of the magnetic field is proportional to the square root of laser intensity (i.e., the laser B-field) during the rise of the laser pulse. The experimental results are compared with numerical simulations using a particle-in-cell code which also shows clear asymmetry of the field profile and similar magnetic field growth rates and scalings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>= 10(19) W/cm(2)) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields (similar to 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-mu m aluminum target was observed when 0.1-6 mu m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report measurements of ultrahigh magnetic fields produced during intense (similar to10(20) Wcm(-2) mum(2)) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently using KrF high power laser (248 nm; 350 fs; 5.0x10(16) W/cm(2)) in the Rutherford Appleton Laboratory an experimental search for recombination extreme ultraviolet (XUV) laser action in Li-like nitrogen ions was performed. To understand the experimental results of line emission at 24.7 nm in the 3d(5/2)-2p(3/2) transition of the Li-like nitrogen ion a simulation was undertaken using a one-dimensional Lagrangian hydrodynamic code. From the simulation results, we confirmed that there was nonlinear dependence of spectral line emission on the gas density which was well matched to the experimental results. Only a six times increase of the 24.7 nm emission intensity was obtained when the plasma length was increased 1000 times from 1 mu m as an optically thin case to 1 mm. Also, the spatial profile of the electron density and temperature was obtained and the electron temperature was about 40-50 eV which was too high for the optical field ionization x-ray lasing. We could not find evidence of x-ray laser gain. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 mu m in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.