930 resultados para isothermal thermo-gravimetric analysis
Resumo:
Transparent glasses of SrBi2B2O7 (SBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T (g)) and the crystallization parameters [crystallization activation energy (E (cr)) and Avrami exponent (n)] were evaluated under non-isothermal conditions using DSC. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy [E (c)(x)] that was determined by Ozawa method, decreased with the fraction of crystallization (x). The Avrami exponent (n(x)) increased with the increase in fraction of crystallization (x) suggesting that there was a change over in the crystallization process from the surface to the bulk.
Resumo:
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Resumo:
New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.
Resumo:
The domain of dynamic recrystallization (DRX) in as-cast 304 stainless steel material occurs at higher temperatures (1250 degrees C) and lower strain rates (0.001 s(-1)) than in wrought 304 stainless steel (1100 degrees C and 0.01 s(-1)). The above result has been explained earlier on the basis of a simple theoretical DRX model involving the rate of nucleation versus rate of grain boundary migration. The present investigation is aimed at examining experimentally the influence of carbide particles on the DRX of ascast 304 using secondary ion mass spectrometric (SIMS) analysis. Isothermal compression tests at a constant true strain rate have been performed on wrought 304 and as-cast 304 materials in the temperature and strain rate ranges of 1000 to 1250 degrees C and 0.001 to 1 s(-1) respectively. The SIMS analysis carried out on the deformed samples revealed that the large carbides present in the as-cast 304 material strongly influence the DRX process. In as-cast 304 material, the presence of large carbide particles in the microstructure shifts the DRX domain to higher temperature and lower strain rate in comparison with wrought 304 material.
Resumo:
A shear flexible 4-noded finite element formulation, having five mechanical degrees of freedom per node, is presented for modeling the dynamic as well as the static thermal response of laminated composites containing distributed piezoelectric layers. This element has been developed to have one electrical degree of freedom per piezoelectric layer. The mass, stiffness and thermo-electro-mechanical coupling effects on the actuator and sensor layers have been considered. Numerical studies have been conducted to investigate both the sensory and active responses on piezoelectric composite beam and plate structures. It is. concluded that both the thermal and pyroelectric effects are important and need to be considered in the precision distributed control of intelligent structures.
Resumo:
Study of laminar boundary layer in mixed convection from vertical plates is carried out. The surface temperature along the vertical plate is assumed to vary arbitrarily with vertical distance. Perturbation technique is used to solve the governing boundary layer equations. The differentials of the wall temperature are used as perturbation elements, which are functions of vertical distance, to obtain universal functions. The universal functions are valid for any type of vertical wall temperature variation. Heat transfer rates and fluid velocity inside the boundary layer can be expressed and calculated using these universal functions. Heat transfer rates are obtained for the special cases of power-law variation of the wall temperature. The effect of the governing parameter (Gr(y)/Re-y(2)) and the power index of the power-law wall temperature variation on heat transfer rates is studied. For the purpose of validation, the mixed convection results obtained by the present technique pertaining to the special cases of isothermal vertical wall are compared with those obtained by similarity analysis reported in literature, and the agreement is found to be good. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A methodology using sensitivity analysis is proposed to measure the effective permeability which includes the interaction of the resin and the reinforcement. Initially, mold-filling experiments were performed at isothermal conditions on the test specimen and the positions of the flow front were tracked with time using a flow visualization method. Following this, mold-filling experiments were simulated using a commercial software to obtain the positions of the flow front with time at the process conditions used for experiments. Several iterations were performed using different trial values of the permeability until the experimentally tracked and simulated positions of the flow front with time were matched. Finally, the value of the permeability thus obtained was validated by comparing the positions obtained by performing the experiments at different process conditions with the positions obtained by simulating the experiments. In this study, woven roving and chopped strand mats of E-class glass fiber and unsaturated polyester resin were used for the experiments. From the results, it was found that the measured permeabilities were consistent with varying process conditions. POLYM. COMPOS., 2012. (c) 2012 Society of Plastics Engineers
Resumo:
Carbon nanotubes (CNT) in bulk form offer outstanding structural and functional properties, and are shown to remain viscoelastic over a wide temperature range (77-1273 K) under inert conditions. We examine the quasi-static and dynamic compressive mechanical response of these cellular CNT materials in ambient air up to a temperature of 773 K. In uniaxial quasi-static compression, several displacement bursts are noted at large strains. These are results of the slippage and zipping of the CNT, and lead to significant mechanical energy absorption. Results of the dynamic mechanical analysis experiments show no degradation in storage modulus and loss coefficient for up to 20 h at 673 K. Hence, these stable cellular CNT structures can be utilized up to a maximum temperature of 673 K in air, which is much higher than the best polymers. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of different pre-aging treatments on the microstructural evolution of lead-free solder and growth of interfacial intermetallic compound layers under thermal cycling has been investigated in this work. The results show that there are distinct differences in the microstructural changes between samples with no pretreatment, samples that have experienced thermal annealing at 125A degrees C for 750 h before thermal cycling, and those that have had direct current (DC) stressing for 750 h as pretreatment. The microstructural evolution of the solder matrix is rationalized by utilizing the science of microstructures and analysis of the influence of electron flow on the precipitation phenomena. The finite-element method is utilized to understand the loading conditions imposed on the solder interconnections during cyclic stressing. The growth of intermetallic reaction layers is further analyzed by utilizing quantitative thermodynamic calculations coupled with kinetic analysis. The latter is based on the changes in the intrinsic diffusion fluxes of elements induced by current flow and alloying elements present in the system. With this concurrent approach the differences seen in thermal cycling behavior between the different pre-aging treatments can be explained.
Resumo:
Thermo Acoustic Prime Movers (TAPMs) are being considered as the ideal choice for driving the Pulse Tube Cryocoolers replacing the conventional compressors. The advantages are the absence of moving components and they can be driven by low grade energy as such as fuel, gas, solar energy, waste heat etc. While the development of such TAPMs is in progress in our laboratory, their design and fabrication should be guided by numerical modeling and this may be done by several methods such as solving the energy equation 1], enthalpy flow model 2], CFD 3], etc. We have used CFD technique, since it provides a better insight into the velocity and temperature profiles. The analysis is carried out by varying parameters such as (a) temperature difference across the stack, (b) stack and resonator lengths and (c) different working fluids such as air, nitrogen, argon etc. The theoretical results are compared with the experimental data wherever possible and they are in reasonably good agreement with each other. The analysis indicate that (i) larger temperature difference across the stack leads to increased acoustic amplitude, (ii) longer resonator leads to decrease in frequency with lesser amplitude and (iii) there exists an optimal stack length for the best performance of TAPM. These results are presented here.
Resumo:
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.
Resumo:
This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flowreversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Ro(m)) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (similar to 20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence lambda(2)(f) analysis is presented to determine the natural couplingmodes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region alters the linearity range with the structure showing a response even at higher pulsing frequencies (100-300 Hz). (C) 2013 AIP Publishing LLC.
Resumo:
An attempt to study the fluid dynamic behavior of two phase flow comprising of solid and liquid with nearly equal density in a geometrical case that has an industrial significance in theareas like processing of polymers, food, pharma ceutical, paints. In this work,crystalline silica is considered as the dispersed medium in glycerin. In the CFD analysis carried out,the two phase components are considered to be premixed homogeneously at the initial state. The flow in a cylinder that has an axially driven bi-lobe rotor, a typical blender used in polymer industry for mixing or kneading to render the multi-component mixture to homogeneous condition is considered. A viscous, incompressible, isothermal flow is considered with an assumption that the components do not undergo any physical change and the solids are rigid and mix in fully wetting conditions. Silica with a particle diameter of 0.4 mm is considered and flow is analyzed for different mixing fractions. An industry standard CFD code is used for solving 3D-RANS equations. As the outcome of the study the torque demand by the bi-lobe rotor for different mixture fractions which are estimated show a behavioral consistency to the expected physical phenomena occurring in the domain considered.
Resumo:
One-dimensional transient heat flow is interpreted as a procession of `macro-scale translatory motion of indexed isothermal surfaces'. A new analytical model is proposed by introducing velocity of isothermal surface in Fourier heat diffusion equation. The velocity dependent function is extracted by revisiting `the concept of thermal layer of heat conduction in solid' and `exact solution' to estimate thermal diffusivity. The experimental approach involves establishment of 1 D unsteady heat flow inside the sample through Step-temperature excitation. A novel self-reference interferometer is utilized to separate a `unique isothermal surface' in time-varying temperature field. The translatory motion of the said isothermal surface is recorded using digital camera to estimate its velocity. From the knowledge of thermo-optic coefficient, temperature of the said isothermal surface is predicted. The performance of proposed method is evaluated for Quartz sample and compared with literature.
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.