571 resultados para interspecific
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study’s objective was to investigate mandibular fractures in 50 short-finned pilot whales, Globicephala macrorhynchus, from two mass strandings. Based on current theories that this species is sexually dimorphic and polygynous, hypotheses were: (1) males should suffer more frequent or more substantial mandibular fractures than should females, and (2) fracture occurrence should increase with male reproductive maturity and potential correlates of maturity, such as age and length. Fractures were described and correlated with physical characteristics to infer possible explanations for injuries. Mandibular fractures were surprisingly common in males and females, being found in more than half of the animals examined (27/50, or 54% overall; 17/36 or 47% of females and 10/14 or 71% of males). Length was the only correlate of fracture presence; the proportion of animals showing evidence of fracture increased with length. These results offer some support to initial hypotheses, but there must be another set of consequences that contribute to mandibular fractures in females. A combination of intra- and interspecific interactions and life history characteristics may be responsible for fractures. Further research from a larger sample of this and other cetacean species are suggested to help elucidate both the causes and implications of mandibular fractures.
Resumo:
This paper reports the results of a comparative study of the development of the larval Echinococcus multilocularis Leuckart, 1863), and associated tissue reaction in naturally and experimentally infected mammals representing 31 species. The histogenesis of the larval cestode was traced in detail in arvicoline rodents of several species, and interspecific differences were defined. In arvicoline rodents, the developing larva exhibited host-specific characteristics within about a month after infection was established. The tissue reaction in Microtus oeconomus was characterized by the production of a large quantity of detritus around the larva, and by the formation of a thick epithelioid zone. In one subspecies, M. oeconomus innuitus, development of the larva was retarded, and the detrital mass was often calcified; in another, M. oeconomus operarius, the detritus rarely became calcified and the larva proliferated more rapidly. In M. pennsylvanicus, the tissue reaction was minimal, and little detritus was present. The characteristics of the tissue reaction in M. montebelli placed it in an intermediate position between the aforementioned species. In Clethrionomys rutilus, a thin epithelioid zone and an outer zone of loose collagenous fibers composed the adventitial layer; exogenous budding was retarded in this vole. A minimal tissue reaction occurred in Lagurus curtatus. In Lemmus spp., larger cysts were characteristic, but areas of small-cystic proliferation were always present. Similar differences in species or subspecies of Citellus and Dicrostonyx were described. Lesions of alveolar bydatid disease in man also were studied. The invasive growth of the larval cestode in the human liver involves a process comparable to small-cystic proliferation in the natural intermediate hosts. Although the later stages of development of the larval cestode are inhibited in man, exogenous proliferation of vesicles continues for the life of the host. The lesion in man was compared with a morphologically similar formation produced by anomalous development of the larval E. granulosus in the bovine liver. The latter is distinguished by the absence of areas of small-cystic proliferation. Non-echinococcal lesions found in the tissues studied, some of which resembled foci caused by the larval E. multilocularis, were briefly discussed.
Resumo:
As with many organisms across the globe, Cicindela nevadica lincolniana is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche partitioning along with improving techniques for captive rearing protocol and increasing public awareness about the conservation of this local insect. Ovipositional selectivity was examined for Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela togata, Cicindela punctulata, and Cicindela fulgida. Models reflect that these species of co-occurring tiger beetles select different ranges of salinity in which to oviposit thereby reducing the potential for interspecific competition. In a second study, thermoregulatory niche partitioning was examined for the same complex of tiger beetle species. Time spent in the sun, on different substrates, and engaging in various behaviors associated with thermoregulation were significantly different during different parts of the day and between species. I continued along a previous line of study to develop a viable captive rearing program. So far fourteen adult Cicindela nevadica lincolniana have been successfully reared in captivity. Overwintering mortality has been determined as a key factor in the mortality of this species in captivity. Finally, I examined the potential for using the visual arts to promote the conservation of Cicindela nevadica lincolniana and associated saline wetlands. The results from surveys conducted at the exhibit suggest that art exhibits can have a strong positive impact on members of the community.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of spatial competition among colonial marine organisms are often evident in the contact zones between colonies. These effects are especially pronounced when the interaction results in overgrowth or necrosis of one of the competitors. Ascidians, one of the dominant taxonomic groups in subtidal sessile communities, have specialized morula cells that provide a defense against microbial infections. Injuries resulting from interspecific competitive interactions might also act as a stimulus for this defensive mechanism. Therefore, we expected to see the recruitment of morula cells in tissues near competitor contact zones. To test the hypothesis that spatial competition elicits this immune response, we placed colonies of the ascidian Didemnum perlucidum from southeastern Brazil in four different types of competitive situations: (1) overgrowth of the competitor, (2) stand-off interactions, (3) overgrowth by the competitor, and (4) free of competitors. Our results indicate that competitive interactions increase the population of morula cells in contact zones, as more cells were observed in interactions that resulted in the overgrowth of individuals of D. perlucidum, and fewer cells were observed in colonies that were free of competitors. We identified the defensive function of the morula cells by showing the presence of the enzyme phenoloxidase within its vacuoles. Phenoloxidase is a widespread enzyme among animals and plants, and is frequently used in defense by synthesizing toxic quinones from polyphenol substrates. This is the first study to document the presence of morula cells in didemnid ascidians and the mobilization of these cells by spatial competition by heterospecifics, and one of the first studies to identify phenoloxidase activity in morula cells.
Resumo:
The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.