936 resultados para interlateral asymmetry
Resumo:
We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.
Resumo:
In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.
Resumo:
1. Resilience-based approaches are increasingly being called upon to inform ecosystem management, particularly in arid and semi-arid regions. This requires management frameworks that can assess ecosystem dynamics, both within and between alternative states, at relevant time scales. 2. We analysed long-term vegetation records from two representative sites in the North American sagebrush-steppe ecosystem, spanning nine decades, to determine if empirical patterns were consistent with resilience theory, and to determine if cheatgrass Bromus tectorum invasion led to thresholds as currently envisioned by expert-based state-and-transition models (STM). These data span the entire history of cheatgrass invasion at these sites and provide a unique opportunity to assess the impacts of biotic invasion on ecosystem resilience. 3. We used univariate and multivariate statistical tools to identify unique plant communities and document the magnitude, frequency and directionality of community transitions through time. Community transitions were characterized by 37-47% dissimilarity in species composition, they were not evenly distributed through time, their frequency was not correlated with precipitation, and they could not be readily attributed to fire or grazing. Instead, at both sites, the majority of community transitions occurred within an 8-10year period of increasing cheatgrass density, became infrequent after cheatgrass density peaked, and thereafter transition frequency declined. 4. Greater cheatgrass density, replacement of native species and indication of asymmetry in community transitions suggest that thresholds may have been exceeded in response to cheatgrass invasion at one site (more arid), but not at the other site (less arid). Asymmetry in the direction of community transitions also identified communities that were at-risk' of cheatgrass invasion, as well as potential restoration pathways for recovery of pre-invasion states. 5. Synthesis and applications. These results illustrate the complexities associated with threshold identification, and indicate that criteria describing the frequency, magnitude, directionality and temporal scale of community transitions may provide greater insight into resilience theory and its application for ecosystem management. These criteria are likely to vary across biogeographic regions that are susceptible to cheatgrass invasion, and necessitate more in-depth assessments of thresholds and alternative states, than currently available.
Resumo:
We address the problem of temporal envelope modeling for transient audio signals. We propose the Gamma distribution function (GDF) as a suitable candidate for modeling the envelope keeping in view some of its interesting properties such as asymmetry, causality, near-optimal time-bandwidth product, controllability of rise and decay, etc. The problem of finding the parameters of the GDF becomes a nonlinear regression problem. We overcome the hurdle by using a logarithmic envelope fit, which reduces the problem to one of linear regression. The logarithmic transformation also has the feature of dynamic range compression. Since temporal envelopes of audio signals are not uniformly distributed, in order to compute the amplitude, we investigate the importance of various loss functions for regression. Based on synthesized data experiments, wherein we have a ground truth, and real-world signals, we observe that the least-squares technique gives reasonably accurate amplitude estimates compared with other loss functions.
Structural Insights into Saccharomyces cerevisiae Msh4-Msh5 Complex Function Using Homology Modeling
Resumo:
The Msh4-Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4-Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4-Msh5 complex has hindered an understanding of the structural aspects of Msh4-Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4-Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4-Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4-Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4-Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation.
Resumo:
We present a study of the environments of extended radio sources in the Australia Telescope Low-Brightness Survey (ATLBS). The radio sources were selected from the ATLBS Extended Source Sample, which is a well defined sample containing the most extended of radio sources in the ATLBS sky survey regions. The environments were analysed using 4-m Cerro-Tololo Inter-American Observatory Blanco telescope observations carried out for ATLBS fields in the Sloan Digital Sky Survey r(') band. We have estimated the properties of the environments using smoothed density maps derived from galaxy catalogues constructed using these optical imaging data. The angular distribution of galaxy density relative to the axes of the radio sources has been quantified by defining anisotropy parameters that are estimated using a new method presented here. Examining the anisotropy parameters for a subsample of extended double radio sources that includes all sources with pronounced asymmetry in lobe extents, we find good evidence for environmental anisotropy being the dominant cause for lobe asymmetry in that higher galaxy density occurs almost always on the side of the shorter lobe, and this validates the usefulness of the method proposed and adopted here. The environmental anisotropy parameters have been used to examine and compare the environments of Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II (FRII) radio sources in two redshift regimes (z < 0.5 and z > 0.5). Wide-angle tail sources and head-tail sources lie in the most overdense environments. The head-tail source environments (for the HT sources in our sample) display dipolar anisotropy in that higher galaxy density appears to lie in the direction of the tails. Excluding the head-tail and wide-angle tail sources, subsamples of FRI and FRII sources from the ATLBS appear to lie in similar moderately overdense environments, with no evidence for redshift evolution in the regimes studied herein.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Resumo:
Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.
Resumo:
Systematic investigation on synergetic effects of geometry, length, denticity, and asymmetry of donors was performed through the formation of a series of uncommon Pd-II aggregates by employing the donor in a multicomponent self-assembly of a cis-blocked 90 degrees Pd-II acceptor and a tetratopic donor. Some of these assemblies represent the first examples of these types of structures, and their formation is not anticipated by only taking the geometry of the donor and the acceptor building units into account. Analysis of the crystal packing of the X-ray structure revealed several H bonds between the counteranions (NO3-) and water molecules (OHON). Moreover, H-bonded 3D-networks of water are present in the molecular pockets, which show water-adsorption properties with some variation in water affinity. Interestingly, these complexes exhibit proton conductivity (1.87x10(-5)-6.52x10(-4)Scm(-1)) at 296K and low relative humidity (ca. 46%) with activation energies of 0.29-0.46eV. Moreover, the conductivities further increase with the enhancement of humidity. The ability of these assemblies to exhibit proton-conducting properties under low-humidity conditions makes these materials highly appealing as electrolytes in batteries and in fuel-cell applications.
Resumo:
The structure of the borate complex responsible for the enantiodifferentiation of amines using a previously reported three-component protocol has been established. The choice between an ion pair and an amine-coordinated complex with the N atom of the amine coordinated to the B atom is favored for the former structure based on the DFT-calculated B-11 NMR chemical shifts. In contrast to expectations, the anisotropies of the quadrupolar B-11 nucleus for the two structures were calculated to be indistinguishable with regard to their effect on the linewidth of the NMR signal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
G-Quadruplexes occupy important regulatory regions in the genome. DNA G-quadruplexes in the promoter regions and RNA quadruplexes in the UTRs (untranslated regions) have been individually studied and variously implicated at different regulatory levels of gene expression. However, the formation of G-quadruplexes in the sense and antisense strands and their corresponding roles in gene regulation have not been studied in much detail. In the present study, we have elucidated the effect of strand asymmetry in this context. Using biophysical methods, we have demonstrated the formation of stable G-quadruplex structure in vitro using CD and UV melting. Additionally, ITC was employed to demonstrate that a previously reported selective G-quadruplex ligand was able to bind and stabilize the G-quadruplex in the present sequence. Further, we have shown using reporter constructs that although the DNA G-quadruplex in either strand can reduce translation efficiency, transcriptional regulation differs when G-quadruplex is present in the sense or antisense strand. We demonstrate that the G-quadruplex motif in the antisense strand substantially inhibits transcription, while when in the sense strand, it does not affect transcription, although it does ultimately reduce translation. Further, it is also shown that the G-quadruplex stabilizing ligand can enhance this asymmetric transcription regulation as a result of the increased stabilization of the G-quadruplex.
Resumo:
We present a theoretical model using a density matrix approach to show the influence of multiple excited states on the optical properties of an inhomogeneously broadened Lambda V-system of the Rb-87 D2 line. These closely spaced multiple excited states cause asymmetry in absorption and dispersion profiles. We observe the reduced absorption profiles, due to dressed state interactions of the applied electromagnetic fields, which results the Mollow sideband-like transparency windows. In a room temperature vapor, we obtain a narrow enhanced absorption and steep positive dispersion at the line center when the strengths of control and pump fields are equal. Here, we show how the probe transmittance varies when it passes through the atomic medium. We also discuss the transient behavior of our system which agrees well with the corresponding absorption and dispersion profiles. This study has potential applications in controllability of group velocity, and for optical and quantum information processing.
Resumo:
In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Omega - kappa, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.