981 resultados para insect-plant interactions
Resumo:
BACKGROUND AND PURPOSE The serine and cysteine peptidase inhibitor, BbCI, isolated from Bauhinia bauhinioides seeds, is similar to the classical plant Kunitz inhibitor, STI, but lacks disulphide bridges and methionine residues. BbCI blocks activity of the serine peptidases, elastase (K(iapp) 5.3 nM) and cathepsin G (K(iapp) 160.0 nM), and the cysteine peptidase cathepsin L (K(iapp) 0.2 nM). These three peptidases play important roles in the inflammatory process. EXPERIMENTAL APPROACH We measured the effects of BbCI on paw oedema and on leucocyte accumulation in pleurisy, both induced by carrageenan. Leucocyte-endothelial cell interactions in scrotal microvasculature in Wistar rats were investigated using intravital microscopy. Cytokine levels in pleural exudate and serum were measured by ELISA. KEY RESULTS Pretreatment of the animals with BbCI (2.5 mg.kg(-1)), 30 min before carrageenan-induced inflammation, effectively reduced paw oedema and bradykinin release, neutrophil migration into the pleural cavity. The number of rolling, adhered and migrated leucocytes at the spermatic fascia microcirculation following carrageenan injection into the scrotum were reduced by BbCI pretreatment. Furthermore, levels of the rat chemokine cytokine-induced neutrophil chemo-attractant-1 were significantly reduced in both pleural exudates and serum from animals pretreated with BbCI. Levels of interleukin-1 beta or tumour necrosis factor-alpha, however, did not change. CONCLUSIONS AND IMPLICATIONS Taken together, our data suggest that the anti-inflammatory properties of BbCI may be useful in investigations of other pathological processes in which human neutrophil elastase, cathepsin G and cathepsin L play important roles.
Resumo:
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.
Resumo:
Insect chymotrypsins are distinctively sensitive to plant protein inhibitors, suggesting that they differ in subsite architecture and hence in substrate specificities. Purified digestive chymotrypsins from insects of three different orders were assayed with internally quenched fluorescent oligopeptides with three different amino acids at P1 (Tyr, Phe, and Leu) and 13 amino acid replacements in positions P1`, P2, and P3. The binding energy (Delta G(s), calculated from Km values) and the activation energy (Delta G(T)(double dagger), determined from k(cat)/K-m values) were calculated. The hydrophobicities of each subsite were calculated from the efficiency of hydrolysis of the different amino acid replacements at that subsite. The results showed that except for S1, the other subsites (S2, S3, and S1`) vary among chymotrypsins. This result contrasts with insect trypsin data that revealed a trend along evolution, putatively associated with resistance to plant inhibitors. In spite of those differences, the data suggested that in lepidopteran chymotrypsins S2 and S1` bind the substrate ground state, whereas only S1` binds the transition state, supporting aspects of the present accepted mechanism of catalysis. 2008 Elsevier Ltd. All rights reserved.
Resumo:
RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell-cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG-GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Trait-mediated effects on flowers: Artificial spiders deceive pollinators and decrease plant fitness
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O rendimento e a qualidade de sementes de abóbora podem ser aprimorados por uma densidade populacional de plantas adequada, além da quantidade de pólen, que influi na qualidade da polinização e fertilização. Para este estudo, aplicaram-se nove tratamentos, que resultaram da combinação fatorial de três espaçamentos entre plantas (0,8 x 0,3; 0,8 x 0,6 e 0,8 x 0,9 m) com duas quantidades de pólen (50% de uma antera e uma antera inteira) e a polinização natural por insetos. Foram avaliados parâmetros de produção de frutos e sementes, além da qualidade física e fisiológica das sementes. O delineamento experimental adotado foi em blocos ao acaso com cinco repetições e dez plantas úteis por amostragem. O aumento do espaçamento entre plantas elevou o número médio de frutos maduros e a produção de sementes por planta. A produtividade de sementes foi diretamente proporcional à quantidade de pólen usada durante a polinização. Já o fator espaçamento entre plantas não afetou a produção de sementes por área. A maior quantidade de pólen resultou em uma maior produção de sementes por planta e por área. A polinização manual, com a utilização de uma antera inteira, não diferiu da polinização natural com insetos, tanto para rendimento como para a qualidade de sementes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Difficulties in reproducing the citrus variegated chlorosis (CVC) disease symptoms in expertmental plants have delayed implementation of studies to better understand the essential aspects of this important disease. In an extensive Study, cultivars of sweet orange (Citrus sinensis) were inoculated with Xylella fastidiosa using procedures that included root immersion, and stein absorption, pricking, or infiltration of the inoculum into plants of different ages. Inoculum consisted of 5-day-old cultures or cell suspensions of CVC strain 9a5c diluted in phosphate-buffered saline. Inoculated plants and controls were grown, or transferred just after inoculation, to 5-liter pots or 72-cell foam trays. Approximately 4, 5, 9, and 12 months after inoculation, leaves were collected and processed for polymerase chain reaction analysis or X. fastidiosa isolation on BCYE agar medium. Root immersion and stem inoculation of 4- and 6-month-old plants resulted in low percentages of symptomatic (0 to 7%) and plants positive by isolation (0 to 9%). Pinpricked or injected stems of I-month-old seedlings resulted in high percentages of plants symptomatic (29 and 90% in Pera Rio, 75, 59, and 83% in Valencia, and 77% in Natal) or positive by isolation (26 and 93% in Pera Rio, 98, 96, and 83% in Valencia, and 77% in Natal), In foam trays, the seedlings grew less, the incubation period was shorter. and disease severity was higher than in pots. This system allows testing of higher numbers of plants in a reduced space with a more precise reproduction of the experimental conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores - secondary dispersal and/or increased germination - varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.