1000 resultados para indirizzo :: 563 :: Curriculum 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una 3-varietà si dice virtualmente fibrata se ammette un rivestimento finito che è un fibrato con base una circonferenza e fibra una superficie. In seguito al lavoro di geometrizzazione di Thurston e Perelman, la generica 3-varietà risulta essere iperbolica; un recente risultato di Agol afferma che una tale varietà è sempre virtualmente fibrata. L’ingrediente principale della prova consiste nell’introduzione, dovuta a Wise, dei complessi cubici nello studio delle 3-varietà iperboliche. Questa tesi si concentra sulle proprietà algebriche e geometriche di queste strutture combinatorie e sul ruolo che esse hanno giocato nella dimostrazione del Teorema di Fibrazione Virtuale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo lavoro si presenta come un’indagine pluridisciplinare fra metrica,linguistica,letteratura e didattica, in cui la rima n’è l’oggetto e il filo conduttore. Attraverso questa ricerca si tenta di mostrare la capacità della rima di costituire un ponte fra espressione e contenuto, di allargare così il bagaglio non solo linguistico del fruitore, ma anche quello conoscitivo. Partendo dall’ambito linguistico e metrico, si analizza in prima istanza, l’apporto pratico che la rima ha avuto nell’evoluzione delle lingue volgari indoeuropee, per poi diventare il mezzo più semplice e istintivo per strutturare il verso poetico. Si passa così da un contesto folklorico ad uno colto, percorrendo tutti i secoli della nostra storia letteraria. Nella seconda parte la materia metrica cede il posto a quella didattico – pedagogica, e il passaggio è facilitato dalla poesia novecentesca che rimette in discussione il ruolo della rima, e la vede come il mezzo perfetto d’associazione fra parole, non solo di suono, ma anche di senso. A questo risponde la teoria del “binomio fantastico” di cui si avvale Gianni Rodari per creare le sue filastrocche, ed educare divertendo i suoi alunni. La rima con la sua omofonia finale, col suo accostamento casuale, concentra l’attenzione del bambino su di se e lo fa entrare a contatto col mondo delle parole, con la potenza della lingua.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In computer systems, specifically in multithread, parallel and distributed systems, a deadlock is both a very subtle problem - because difficult to pre- vent during the system coding - and a very dangerous one: a deadlocked system is easily completely stuck, with consequences ranging from simple annoyances to life-threatening circumstances, being also in between the not negligible scenario of economical losses. Then, how to avoid this problem? A lot of possible solutions has been studied, proposed and implemented. In this thesis we focus on detection of deadlocks with a static program analysis technique, i.e. an analysis per- formed without actually executing the program. To begin, we briefly present the static Deadlock Analysis Model devel- oped for coreABS−− in chapter 1, then we proceed by detailing the Class- based coreABS−− language in chapter 2. Then, in Chapter 3 we lay the foundation for further discussions by ana- lyzing the differences between coreABS−− and ASP, an untyped Object-based calculi, so as to show how it can be possible to extend the Deadlock Analysis to Object-based languages in general. In this regard, we explicit some hypotheses in chapter 4 first by present- ing a possible, unproven type system for ASP, modeled after the Deadlock Analysis Model developed for coreABS−−. Then, we conclude our discussion by presenting a simpler hypothesis, which may allow to circumvent the difficulties that arises from the definition of the ”ad-hoc” type system discussed in the aforegoing chapter.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.