939 resultados para hydrogen oxidation
Resumo:
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.
Resumo:
The aim of our study was to present a new headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable to the routine determination of hydrogen sulfide (H(2)S) concentrations in biological and gaseous samples. The primary analytical drawback of the GC/MS methods for H(2)S measurement discussed in the literature was the absence of a specific H(2)S internal standard required to perform quantification. Although a deuterated hydrogen sulfide (D(2)S) standard is currently available, this standard is not often used because this standard is expensive and is only available in the gas phase. As an alternative approach, D(2)S can be generated in situ by reacting deuterated chloride with sodium sulfide; however, this technique can lead to low recovery yield and potential isotopic fractionation. Therefore, N(2)O was chosen for use as an internal standard. This method allows precise measurements of H(2)S concentrations in biological and gaseous samples. Therefore, a full validation using accuracy profile based on the β-expectation tolerance interval is presented. Finally, this method was applied to quantify H(2)S in an actual case of H(2)S fatal intoxication.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders. Antioxid. Redox Signal. 00, 000000.
Resumo:
FSP27 (CIDEC in humans) is a protein associated with lipid droplets that downregulates the fatty acid oxidation (FAO) rate when it is overexpressed. However, little is known about its physiological role in liver. Here, we show that fasting regulates liver expression of Fsp27 in a time-dependent manner. Thus, during the initial stages of fasting a maximal induction of 800-fold was achieved, while during the later phase of fasting, Fsp27 expression decreased. The early response to fasting can be explained by a canonical PKA-CREB-CRTC2 signaling pathway since: i) CIDEC expression was induced by forskolin, ii) Fsp27 promoter activity was increased by CREB, and iii) Fsp27 expression was upregulated in the liver of Sirt1 knockout animals. Interestingly, pharmacological (etomoxir) or genetic (Hmgcs2 interference) inhibition of the FAO rate increases the in vivo expression of Fsp27 during fasting. Similarly, CIDEC expression was upregulated in HepG2 cells by either etomoxir or HMGCS2 interference. Our data indicate that there is a kinetic mechanism of auto-regulation between short- and long-term fasting, by which free fatty acids delivered to the liver during early fasting are accumulated/exported by FSP27/CIDEC, while over longer periods of fasting they are degraded in the mitochondria through the carnitine palmitoyl transferase (CPT) system.
Resumo:
The presence of cavities filled with new minerals in carbonate rocks is a common feature in oil reservoirs and lead-zinc deposits. Since groundwater equilibrates rapidly with carbonates, the presence of dissolution cavities in deep carbonate host rocks is a paradox. Two alternative geochemical processes have been proposed to dissolve carbonates at depth: hydrogen sulfide oxidation to sulfuric acid, and metal sulfide precipitation. With the aid of geochemical modeling we show that mixing two warm solutions saturated with carbonate results in a new solution that dissolves limestone. Variations in the proportion of the end-member fluids can also form a supersaturated mixture and fill the cavity with a new generation of carbonate. Mixing is in general more effective in dissolving carbonates than the aforementioned processes. Moreover, mixing is consistent with the wide set of textures and mineral proportions observed in cavity infillings.
Resumo:
Sulfur in the soil occurs in two basic forms, organic and inorganic S. The organic form accounts for 95 % of S in most soils. The effectiveness of organic S to oxidate to sulfate was evaluated for total S determination in soil samples by wet (acid) and dry-ash (alkaline) oxidation methods. To evaluate the wet method and the possible use as a reference when evaluating the dry method proposed here, a reference standard from the US National Institute of Standards and Technology (NIST) was used (Montana Soil - NIST 2710). The dry-ash oxidation process with alkaline oxidizing agents is one of the simplest oxidation methods of organic S to the sulfate form and was compared with the wet process. The objective of the study was to develop a dry method that would be easy to apply and allow the complete conversion of organic S to sulfate in soil samples and later detection by turbidimetry. The effectiveness of organic S oxidation to sulfate was evaluated by means of three alkaline oxidation mixtures: NaHCO3 + Ag2O, Eschka mixture (17 % Na2CO3, 66 % MgO, and 17 % K2CO3), and NaHCO3 + CuO. The procedure to quantify the sulfate concentration was based on the reaction with barium chloride and turbidimetric detection. Sulfur quantification in the standard sample by the wet method proved adequate, precise and accurate. It should also be pointed out that no significant differences were found (95 % reliability) between the wet and dry processes (NaHCO3 and Ag2O oxidation mixture) in six different Brazilian soils. The proposed dry method can therefore be used in the preparation of soil samples for total S determination.
Resumo:
The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.
Resumo:
The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.
Resumo:
In this work, electrical measurements show that the breakdown voltage,BVDG, of InP HEMTs increases following exposure to H2. This BVDG shift is nonrecoverable. The increase in BVDG is found to be due to a decrease in the carrier concentration in the extrinsic portion of the device.We provide evidence that H2 reacts with the exposed InAlAs surface in the extrinsic region next to the gate, changing the underlying carrier concentration. Hall measurements of capped and uncapped HEMT samples show that the decrease in sheet carrier concentration can be attributed to a modification of the exposed InAlAs surface. Consistent with this, XPS experiments on uncapped heterostructures give evidence of As loss from the InAlAs surface upon exposure to hydrogen.
Resumo:
Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds.
Resumo:
ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.
Resumo:
Evidence is accumulating that total body mass and its relative composition influence the rate of fat utilization in man. This effect can be explained by two factors operating in concert: (i) the effect of the size of the tissue mass and (ii) the nature of the fuel mix oxidized, i.e. the proportion of energy derived from fat vs. carbohydrate. In a cross-sectional study of 307 women with increasing degrees of obesity, we observed that the respiratory quotient (RQ) in post-absorptive conditions became progressively lower with increased body fatness, indicating a shift in substrate utilization. However, the RQ is known to be also influenced by the diet commonly ingested by the subjects. A short-term mixed diet overfeeding in lean and obese women has also demonstrated the high sensitivity of RQ to changes in energy balance. Following a one-day overfeeding (2500 kcal/day in excess of the previous 24 h energy expenditure), the magnitude of increase in RQ was identical in lean and obese subjects and the net efficiency of substrate utilization and storage was not influenced by the state of obesity.
Resumo:
BACKGROUND: When fructose is ingested together with glucose (GLUFRU) during exercise, plasma lactate and exogenous carbohydrate oxidation rates are higher than with glucose alone. OBJECTIVE: The objective was to investigate to what extent GLUFRU increased lactate kinetics and oxidation rate and gluconeogenesis from lactate (GNG(L)) and from fructose (GNG(F)). DESIGN: Seven endurance-trained men performed 120 min of exercise at approximately 60% VOmax (maximal oxygen consumption) while ingesting 1.2 g glucose/min + 0.8 g of either glucose or fructose/min (GLUFRU). In 2 trials, the effects of glucose and GLUFRU on lactate and glucose kinetics were investigated with glucose and lactate tracers. In a third trial, labeled fructose was added to GLUFRU to assess fructose disposal. RESULTS: In GLUFRU, lactate appearance (120 +/- 6 mumol . kg(1) . min(1)), lactate disappearance (121 +/- 7 mumol . kg(1) . min(1)), and oxidation (127 +/- 12 mumol . kg(1) . min(1)) rates increased significantly (P < 0.001) in comparison with glucose alone (94 +/- 16, 95 +/- 16, and 97 +/- 16 mumol . kg(1) . min(1), respectively). GNG(L) was negligible in both conditions. In GLUFRU, GNG(F) and exogenous fructose oxidation increased with time and leveled off at 18.8 +/- 3.7 and 38 +/- 4 mumol . kg(1) . min(1), respectively, at 100 min. Plasma glucose appearance rate was significantly higher (P < 0.01) in GLUFRU (91 +/- 6 mumol . kg(1) . min(1)) than in glucose alone (82 +/- 9 mumol . kg(1) . min(1)). Carbohydrate oxidation rate was higher (P < 0.05) in GLUFRU. CONCLUSIONS: Fructose increased total carbohydrate oxidation, lactate production and oxidation, and GNG(F). Fructose oxidation was explained equally by fructose-derived lactate and glucose oxidation, most likely in skeletal and cardiac muscle. This trial was registered at clinicaltrials.gov as NCT01128647.