977 resultados para human artificial chromosome
Resumo:
OBJECTIVES: Magnesium aspartate hydrochloride (Magnesiocard, Mg-Asp-HCl) is proposed as a substitute of magnesium sulfate for the treatment of preeclampsia and premature labor. After an i.v. administration of a dose equivalent to that used in the treatment of preeclampsia to nonpregnant volunteers, a 10-fold increase of aspartic acid (Asp) over the physiological level was observed. Animal experiments have demonstrated that highly increased fetal levels of acidic amino acids such as Asp could be associated with neurotoxic damage in the fetal brain. The influence of such an elevation of Asp concentration in the maternal circuit on the fetal level, using the in vitro perfusion model of human placenta, was investigated. STUDY DESIGN: After a control phase (2h), a therapeutic dose of Mg combined with Asp (Magnesiocard, Mg-Asp-HCl) was applied to the maternal circuit approaching 10 times the physiological level of Asp. The administration was performed in two different phases simulating either a peak of maximum concentration (bolus application, 2h) or a steady state level (initially added, 4h). RESULTS: In four experiments, during experimental phases (6h) a slow increase in concentration in the fetal circuit was seen for Mg, AIB (alpha-aminoisobutyric acid, artificial amino acid) and creatinine confirming previous observations. In contrast, no net transfer of Asp across the placenta was seen. A continuous decrease in the concentration of Asp on both maternal and fetal side suggests active uptake and metabolization by the placenta. Viability control parameters remained stable indicating the absence of an effect on placental metabolism, permeability and morphology. CONCLUSION: Elevation of Asp concentration up to 10 times the physiological level by the administration of Mg-Asp-HCl to the maternal circuit under in vitro perfusion conditions of human placenta has no influence on the fetal level of Asp suggesting no transfer of Asp from the maternal to fetal compartment. Therefore, the administration of Mg-Asp-HCl to preeclamptic patients would be beneficial for the patients without any impact on placental or fetal physiology.
Resumo:
In the dual ex vivo perfusion of an isolated human placental cotyledon it takes on average 20-30 min to set up stable perfusion circuits for the maternal and fetal vascular compartments. In vivo placental tissue of all species maintains a highly active metabolism and it continues to puzzle investigators how this tissue can survive 30 min of ischemia with more or less complete anoxia following expulsion of the organ from the uterus and do so without severe damage. There seem to be parallels between "depressed metabolism" seen in the fetus and the immature neonate in the peripartum period and survival strategies described in mammals with increased tolerance of severe hypoxia like hibernators in the state of torpor or deep sea diving turtles. Increased tolerance of hypoxia in both is explained by "partial metabolic arrest" in the sense of a temporary suspension of Kleiber's rule. Furthermore the fetus can react to major changes in surrounding oxygen tension by decreasing or increasing the rate of specific basal metabolism, providing protection against severe hypoxia as well as oxidative stress. There is some evidence that adaptive mechanisms allowing increased tolerance of severe hypoxia in the fetus or immature neonate can also be found in placental tissue, of which at least the villous portion is of fetal origin. A better understanding of the molecular details of reprogramming of fetal and placental tissues in late pregnancy may be of clinical relevance for an improved risk assessment of the individual fetus during the critical transition from intrauterine life to the outside and for the development of potential prophylactic measures against severe ante- or intrapartum hypoxia. Responses of the tissue to reperfusion deserve intensive study, since they may provide a rational basis for preventive measures against reperfusion injury and related oxidative stress. Modification of the handling of placental tissue during postpartum ischemia, and adaptation of the artificial reperfusion, may lead to an improvement of the ex vivo perfusion technique.
Resumo:
Cardiomyopathies are myocardial diseases that lead to cardiac dysfunction, heart failure, arrhythmia, and sudden death. In human medicine, cardiomyopathies frequently warrant heart transplantation in children and adults. Bovine dilated cardiomyopathy (BDCMP) is a heart muscle disorder that has been observed during the last 30 years in cattle of Holstein-Friesian origin. In Switzerland BDCMP affects Swiss Fleckvieh and Red Holstein breeds. BDCMP is characterized by a cardiac enlargement with ventricular remodeling and chamber dilatation. The common symptoms in affected animals are subacute subcutaneous edema, congestion of the jugular veins, and tachycardia with gallop rhythm. A cardiomegaly with dilatation and hypertrophy of all heart chambers, myocardial degeneration, and fibrosis are typical postmortem findings. It was shown that all BDCMP cases reported worldwide traced back to a red factor-carrying Holstein-Friesian bull, ABC Reflection Sovereign. An autosomal recessive mode of inheritance was proposed for BDCMP. Recently, the disease locus was mapped to a 6.7-Mb interval MSBDCMP06-BMS2785 on bovine Chr 18 (BTA18). In the present study the BDCMP locus was fine mapped by using a combined strategy of homozygosity mapping and association study. A BAC contig of 2.9 Mb encompassing the crucial interval was constructed to establish the correct marker order on BTA18. We show that the disease locus is located in a gene-rich interval of 1.0 Mb and is flanked by the microsatellite markers DIK3006 and MSBDCMP51.
Resumo:
Arachnomelia in Brown Swiss cattle is a monogenic autosomal recessive inherited congenital disorder of the skeletal system giving affected calves a spidery look (OMIA ID 000059). Over a period of 20 years 15 cases were sampled in the Swiss and Italian Brown cattle population. Pedigree data revealed that all affected individuals trace back to a single acknowledged carrier founder sire. A genome scan using 240 microsatellites spanning the 29 bovine autosomes showed homozygosity at three adjacent microsatellite markers on bovine Chr 5 in all cases. Linkage analysis confirmed the localization of the arachnomelia mutation in the region of the marker ETH10. Fine-mapping and haplotype analysis using a total of 34 markers in this region refined the critical region of the arachnomelia locus to a 7.19-Mb interval on bovine Chr 5. The disease-associated IBD haplotype was shared by 36 proven carrier animals and allows marker-assisted selection. As the corresponding human and mouse chromosome segments do not contain any clear functional candidate genes for this disorder, the mutation causing arachnomelia in the Brown Swiss cattle might help to identify an unknown gene in bone development.
Resumo:
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
Human x rodent somatic cell hybrids have played an important role in human genetics research. They have been especially useful for assigning genes to chromosomes and isolating DNA markers from specific regions of the human genome.^ By employing a combination of somatic cell genetic, recombinant DNA, and cytogenetic techniques, human DNA excision repair gene ERCC4 was mapped regionally to human 16p13.13-13.2, even though the gene has not been cloned. Human x Chinese hamster ovary (CHO) cell hybrids selected for human ERCC4 activity and containing 16p13.1-p13.3 as the only human genetic material were identified. These hybrids were used to order DNA markers located in 16p13.1-p13.3. New DNA markers physically close to ERCC4 were isolated from such hybrids. Using amplified human DNA from the hybrids as probe in fluorescent in situ hybridization, the short arm breakpoint in the chromosome 16 inversion associated with acute myelomonocytic leukemia (AMML) was found to be physically close to the ERCC4 gene. The physical mapping and eventually, the cloning of the ERCC4 gene, will benefit the understanding of the DNA repair system and the study of other important biomedical problems such as tumorigenesis.^ To facilitate the cloning of ERCC4 gene and, in general, the cloning of genes from any defined regions of the human genome, a method was developed for the direct isolation of human transcribed genes ffom somatic cell hybrids. cDNA was prepared from human x rodent hybrid by using consensus 5$\sp\prime$ splice site sequences as primers. These primers were designed to select immature, unspliced messenger RNA (still retaining species specific repeat sequences) as templates. Screening of a derived cDNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes. The usefulness of the splice site specific primers was analyzed and the cDNA synthesis conditions with these primers were optimized. The procedure was shown to be sensitive enough to clone weakly expressed genes. Studying the expression of the represented genes with the isolated clones was shown to be feasible. Such regional specific human gene fragments will be very valuable for many human genetic studies such as the search of inherited disease genes and the construction of a cDNA map of the human genome. ^
Resumo:
Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^
Resumo:
Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^
Resumo:
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer mortality in American men. The distinction between those cases of prostate cancer destined to progress rapidly to lethal metastatic disease and those with little likelihood of causing morbidity and mortality is a major goal of current research. Some type of diagnostic method is urgently needed to identify which histological prostate cancers have completed the progression to a stage that will produce a life-threatening disease, thus requiring immediate therapeutic intervention. The objectives of this dissertation are to delineate a novel genetic region harboring tumor suppressor gene(s) and to identify a marker for prostate tumorigenesis. I first established an in vitro cell model system from a human prostate epithelial cells derived from tissue fragments surrounding a prostate tumor in a patient with prostatic adenocarcinoma. Since chromosome 5 abnormality was present in early, middle and late passages of this cell model system, I examined long-term established prostate cancer cell lines for this chromosome abnormality. The results implicated the region surrounding marker D5S2068 as the locus of interest for further experimentation and location of a tumor suppressor gene in human prostate cancer. ^ Cancer is a group of complex genetic diseases with uncontrolled cell; division and prostate cancer is no exception. I determined if telomeric DNA, and telomerase activity, alone or together, could serve as biomarkers of prostate tumorigenesis. I studied three newly established human prostate cancer cell lines and three fibroblast cell cultures derived from prostate tissues. In conclusion, my data reveal that in the presence of telomerase activity, telomeric repeats are maintained at a certain optimal length, and analysis of telomeric DNA variations might serve as early diagnostic and prognostic biomarkers for prostate cancer. (Abstract shortened by UMI.)^
Resumo:
D1S1, an anonymous human DNA clone originally called (lamda)Ch4-H3 or (lamda)H3, was the first single copy mapped to a human chromosome (1p36) by in situ hybridization. The chromosomal assignment has been confirmed in other laboratories by repeating the in situ hybridization but not by another method. In the present study, hybridization to a panel of hamster-human somatic cell hybrids revealed copies of D1S1 on both chromosomes 1 and 3. Subcloning D1S1 showed that the D1S1 clone itself is from chromosome 3, and the sequence detected by in situ hybridization is at least two copies of part of the chromosome 3 copy. This finding demonstrates the importance of verifying gene mapping with two methods and questions the accuracy of in situ hybridization mapping.^ Non-human mammals have only one copy of D1S1, and the non-human primate D1S1 map closely resembles the human chromosome 3 copy. Thus, the human chromosome 1 copies appear to be part of a very recent duplication that occurred after the divergence between humans and the other great apes.^ A moderately informative HindIII D1S1 RFLP was mapped to chromosome 3. This marker and 12 protein markers were applied to a linkage study of autosomal dominant retinitis pigmentosa (ADRP). None of the markers proved linkage, but adding the three families examined to previously published data raises the ADRP:Rh lod score to 1.92 at (THETA) = 0.30. ^
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD substrates can be degraded by different routes that all require phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of the three known NMD factors thought to be recruited to nonsense mRNAs via an interaction with P-UPF1, leading to eventual mRNA degradation. By artificial tethering of SMG6 and mutants thereof to a reporter mRNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 to reduce reporter mRNA levels. Using in vivo and in vitro approaches, we further document that SMG6 and the unique stalk region of the UPF1 helicase domain, along with a contribution from the SQ domain, form a novel interaction and we also show that this region of the UPF1 helicase domain is critical for SMG6 function and NMD. Our results show that this interaction is required for NMD and for the capability of tethered SMG6 to degrade its bound RNA, suggesting that it contributes to the intricate regulation of UPF1 and SMG6 enzymatic activities.
Resumo:
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.
Resumo:
Comparative radiation hybrid (RH) maps of individual ovine chromosomes are essential to identify genes governing traits of economic importance in sheep, a livestock species for which whole genome sequence data are not yet available. The USUoRH5000 radiation hybrid panel was used to generate a RH map of sheep chromosome 10 (OAR10) with 59 markers that span 1,422 cR over an estimated 92 Mb of the chromosome, thus providing markers every 2 Mb (equivalent to every 24 cR). The markers were derived from 46 BAC end sequences (BESs), a single EST, and 12 microsatellites. Comparative analysis showed that OAR10 shares remarkable conservation of gene order along the entire length of cattle chromosome 12 and that OAR10 contains four major homologous synteny blocks, each related to segments of the homologous human chromosome 13. Extending the comparison to the horse, dog, mouse, and chicken genome showed that these blocks share conserved synteny across species.