982 resultados para histone H3 acetylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ascertain the mechanism by which nucleosomes are assembled by factors derived from Drosophila embryos, two proteins termed Drosophila chromatin assembly factors (CAFs) 1 and 4 (dCAF-1 and dCAF-4) were fractionated and purified from a Drosophila embryo extract. The assembly of chromatin by dCAF-1, dCAF-4, purified histones, ATP, and DNA is a process that generates regularly spaced nucleosomal arrays with a repeat length that resembles that of bulk native Drosophila chromatin and is not obligatorily coupled to DNA replication. The assembly of chromatin by dCAF-1 and dCAF-4 is nearly complete within 10 min. The dCAF-1 activity copurified with the Drosophila version of chromatin assembly factor-1 (CAF-1), a factor that has been found to be required for the assembly of chromatin during large tumor (T) antigen-mediated, simian virus 40 (SV40) origin-dependent DNA replication. The dCAF-4 activity copurified with a 56-kDa core-histone-binding protein that was purified to > 90% homogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histones of all eukaryotes show only a low degree of primary structure homology, but our earlier crystallographic results defined a three-dimensional structural motif, the histone fold, common to all core histones. We now examine the specific architectural patterns within the fold and analyze the nature of the amino acid residues within its functional segments. The histone fold emerges as a fundamental protein dimerization motif while the differentiations of the tips of the histone dimers appear to provide the rules of core octamer assembly and the basis for nucleosome regulation. We present evidence for the occurrence of the fold from archaebacteria to mammals and propose the use of this structural motif to define a distinct family of proteins, the histone fold superfamily. It appears that evolution has conserved the conformation of the fold even through variations in primary structure and among proteins with various functional roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of histone H1 isolated from chicken erythrocytes with restriction fragments from plasmids pBR322 and pUC19 was studied by gel electrophoresis. Certain restriction fragments exhibited unusually high affinity for the histone, forming high molecular mass complexes at protein to DNA ratios at which the other fragments did not show evidence for binding. The highly preferred fragments are intrinsically curved, as judged by their electrophoretic mobility in polyacrylamide gels, by computer modeling, and by imaging with scanning force microscopy. However, control experiments with either curved portions of the same fragments or highly curved kinetoplast DNA fragments showed that the presence of curvature alone was not sufficient for preferential binding. By using various restriction fragments centered around the highly preferred sequence, it was found that the high-affinity binding required in addition the presence of specific sequences on both sides of the region of curvature. Thus, both curvature and the presence of specific sites seem to be required to generate high affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H1 histones bind to the linker DNA between nucleosome core particles and facilitate the folding of chromatin into a 30-nm fiber. Mice contain at least seven nonallelic subtypes of H1, including the somatic variants H1a through H1e, the testis-specific variant H1t, and the replacement linker histone H1(0). H1(0) accumulates in terminally differentiating cells from many lineages, at about the time when the cells cease dividing. To investigate the role of H1(0) in development, we have disrupted the single-copy H1(0) gene by homologous recombination in mouse embryonic stem cells. Mice homozygous for the mutation and completely lacking H1(0) mRNA and protein grew and reproduced normally and exhibited no anatomic or histologic abnormalities. Examination of tissues in which H1(0) is normally present at high levels also failed to reveal any abnormality in cell division patterns. Chromatin from H1(0)-deficient animals showed no significant change in the relative proportions of the other H1 subtypes or in the stoichiometry between linker histones and nucleosomes, suggesting that the other H1 histones can compensate for the deficiency in H1(0) by occupying sites that normally contain H1(0). Our results indicate that despite the unique properties and expression pattern of H1(0), its function is dispensable for normal mouse development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-like growth factor 2 antisense (Igf2as) gene is part of the Ins-Igf2-H19 imprinted gene cluster. The function of the paternally expressed Igf2as is still elusive. In our previous work, we showed that Igf2as transcripts were located in the cytoplasm of C2C12 mouse myoblast cells, associated with polysomes and polyadenylated suggesting that Igf2as is protein coding. In the present work, the protein coding capacity of Igf2as was investigated. We demonstrate for the first time the existence of a polypeptide translated from an Igf2as construct. Furthermore, an RNA-Seq analysis was performed using RNA prepared from skeletal muscles of newborn wild-type and ∆ DMR1-U2 mice to further elucidate the function of Igf2as transcripts. We found no evidence for a regulatory role of Igf2as in the imprinted gene cluster. Interestingly, the RNA-Seq analysis indicated that Igf2as plays a role in the energy metabolism, the cell cycle, histone acetylation and muscle contraction pathways. Our Igf2as investigations further elucidated that there are two distinct Igf2as transcripts corresponding to two putative ORFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ataxia-telangiectasia mutated (ATM) protein kinase is activated in response to ionizing radiation (IR) and activates downstream DNA-damage signaling pathways. Although the role of ATM in the cellular response to ionizing radiation has been well characterized, its role in response to other DNA-damaging agents is less well defined. We previously showed that genistein, a naturally occurring isoflavonoid, induced increased ATM protein kinase activity, ATM-dependent phosphorylation of p53 on serine 15 and activation of the DNA-binding properties of p53. Here. we show that genistein also induces phosphorylation of p53 at serines 6, 9, 20,46, and 392, and that genistein-induced accumulation and phosphorylation of p53 is reduced in two ATM-deficient human cell lines. Also, we show that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 139. The related bioflavonoids, daidzein and biochanin A, did not induce either phosphorylation of p53 or ATM at these sites. Like genistein, quercetin induced phosphorylation of ATM on serine 198 1, and ATM-dependent phosphorylation of histone H2AX on serine 139; however, p53 accumulation and phosphorylation on serines 6, 9, 15, 20, 46, and 392 occurred in ATM-deficient cells, indicating that ATM is not required for quercetin-induced phosphorylation of p53. Our data suggest that genistein and quercetin induce different DNA-damage induced signaling pathways that, in the case of genistein, are highly ATM-dependent but, in the case of quercetin, may be ATM-dependent only for some downstream targets. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the historic H1 subtype, H1-1, in eight legumes belonging to four genera of the tribe Vicieae (Pisum, Lathyrus, Lens, and Vicia), revealed an extended region consisting of the tandemly repeated AKPAAK motifs. We named this region the Regular zone (RZ). The AKPAAK motifs are organized into two blocks separated by a short (two or six amino acids) intervening sequence (IS). The distal block contains six AKPAAK motifs, while the number of repeats in the proximal block varies from six in V. faba to seven in the other species. In V. hirsuta, the first two repeated units of the proximal block are octapeptides AKAKPAAK. The apparent rate of synonymous substitutions in the blocks of RZ is much higher than in the rest of the gene. This can be explained by repeat shuffling within each block. In the C-domain of the orthologous H1 subtype froth Medicago truncatula (tribe Trifolieae), a region corresponding to the RZ of Vicieae species was found. It also consists of two blocks of AKPAAK motifs (four and three repeats in the proximal and distal blocks, respectively). These blocks are separated by a 20-amino acid IS. The first 20 amino acids of the Medicago RZ are not part of AKPAAK repeats. We hypothesise that the RZ has most probably evolved as a result of an expansion of AKPAAK repeats from two separate sites in the C-domain. This process started tens of millions of years ago and was most likely directed by positive selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of many conventional chemotherapeutic drugs is often severely restricted due to dose-limiting toxicities, as these drugs target the destruction of the proliferating fraction of cells, often with little specificity for tumor cells over proliferating normal body tissue. Many newer drugs attempt to overcome this shortcoming by targeting defective gene products or cellular mechanisms that are specific to the tumor, thereby minimizing the toxicity to normal tissue. Histone deacetylase inhibitors are an example of this type of tumor-directed drug, having significant toxicity for tumors but minimal effects on normal tissue. These drugs can affect the transcriptional program by modifying chromatin structure, but it is not yet clear whether specific transcriptional changes are directly responsible for their tumor-selective toxicity. Recent evidence suggests that transcriptional changes underlie their cytostatic activity, although this is not tumor-selective and affects all proliferating cells. Here we present evidence that supports an alternative mechanism for the tumor-selective cytotoxicity of histone deacetylase inhibitors. The target is still likely to be the chromatin histones, but rather than transcriptional changes due to modification of the transcriptionally active euchromatin, we propose that hyperacetylation and disruption of the transcriptionally inactive heterochromatin, particularly the centromeric heterochromatin, and the inability of tumor cells to cell cycle arrest in response to a specific checkpoint, underlies the tumor-selective cytotoxicity of these drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional chemotherapeutic drugs target proliferating cells, relying on often small differences in drug sensitivity of tumour cells compared to normal tissue to deliver a therapeutic benefit. Consequently, they have significant limiting toxicities and greatly reduced efficacy against nonproliferating compared to rapidly proliferating tumour cells. This lack of selectivity and inability to kill nonproliferating cells that exist in tumours with a low mitotic index are major failings of these drugs. A relatively new class of anticancer drugs, the histone deacetylase inhibitors (HDI), are selectively cytotoxic, killing tumour and immortalized cells but normal tissue appears resistant. Treatment of tumour cells with these drugs causes both G1 phase cell cycle arrest correlated with increase p21 expression, and cell death, but even the G1 arrested cells died although the onset of death was delayed. We have extended these observations using cells that were stably arrested by either serum starvation or expression of the cyclin-dependent kinase inhibitor p16(ink4a). We report that histone deacetylase inhibitors have similar cytotoxicity towards both proliferating and arrested tumour and immortalized cells, although the onset of apoptosis is delayed by 24 h in the arrested cells. Both proliferating and arrested normal cells are unaffected by HDI treatment. Thus, the histone deacetylase inhibitors are a class of anticancer drugs that have the desirable features of being tumour-selective cytotoxic drugs that are equally effective in killing proliferating and nonproliferating tumour cells and immortalized cells. These drugs have enormous potential for the treatment of not only rapidly proliferating tumours, but tumours with a low mitotic index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic overexpression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt. DNase I) or a mutant DNase I ( ash. DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control nontransgenic littermates or wt. DNase I transgenic mice, the ash. DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernalization, the acceleration of flowering by the prolonged cold of winter, ensures that plants flower in favorable spring conditions. During vernalization in Arabidopsis, cold temperatures repress FLOWERING LOCUS C (FLC) expression [1,2] in a mechanism involving VERNALIZATION INSENSITIVE 3 (VIN3) [3], and this repression is epigenetically maintained by a Polycomb-like chromatin regulation involving VERNALIZATION 2 (VRN2), a Su(z)12 homolog, VERNALIZATION 1 (VRN1), and LIKE-HETEROCHROMATIN PROTEIN 1 [4,5,6,7,8]. In order to further elaborate how cold repression triggers epigenetic silencing, we have targeted mutations that result in FLC misexpression both at the end of the prolonged cold and after subsequent development. This identified VERNALIZATION 5 (VRN5), a PHD finger protein and homolog of VIN3. Our results suggest that during the prolonged cold, VRN5 and VIN3 forma heterodimer necessary for establishing the vernalization-induced chromatin modifications, histone deacetylation, and H3 lysine 27 trimethylation required for the epigenetic silencing of FLC. Double mutant and FLC misexpression analyses reveal additional VRN5 functions, both FLC-dependent and -independent, and indicate a spatial complexity to FLC epigenetic silencing with VRN5 acting as a common component in multiple pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1-/-). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1 -/- cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1-/- lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1-/- compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications. © 2014 Daniela Bastianelli et al.