894 resultados para high-performance liquid chromatography coupled with
Resumo:
A novel lysozyme exhibiting antifungal activity and with a molecular mass of 14.4 kDa in SDS–polyacrylamide gel electrophoresis was isolated from mung bean (Phaseolus mungo) seeds using a procedure that involved aqueous extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography on POROS HS-20. Its N-terminal sequence was very different from that of hen egg white lysozyme. Its pI was estimated to be above 9.7. The specific activity of the lysozyme was 355 U/mg at pH 5.5 and 30 °C. The lysozyme exhibited a pH optimum at pH 5.5 and a temperature optimum at 55 °C. It is reported herein, for the first time, that a novel plant lysozyme exerted an antifungal action toward Fusarium oxysporum, Fusarium solani, Pythium aphanidermatum, Sclerotium rolfsii, and Botrytis cinerea, in addition to an antibacterial action against Staphylococcus aureus.
Resumo:
Size-exclusion or gel filtration chromatography is one of the most popular methods for determining the sizes of proteins. Proteins in solution, or other macromolecules, are applied to a column with a defined support medium. The behavior of the protein depends on its size and that of the pores in the medium. If the protein is small relative to the pore size, it will partition into the medium and emerge from the column after larger proteins. Besides a protein's size, this technique can also be used for protein purification, analysis of purity, and study of interactions between proteins. In this unit protocols are provided for size-exclusion high-performance liquid chromatography (SE-HPLC) and for conventional gel filtration, including calibration of columns (in terms of the Stokes radius) using protein standards.
Resumo:
The effects of diabetes mellitus on male reproductive health have not been clearly defined. A previous publication from this group reported significantly higher levels of nuclear DNA fragmentation and mitochondrial DNA deletions in spermatozoa from men with type 1 diabetes. This study compared semen profiles, sperm DNA fragmentation and levels of oxidative DNA modification in spermatozoa of diabetic and non-diabetic men. Semen samples from 12 non-diabetic, fertile men and 11 type 1 diabetics were obtained and subjected to conventional light microscopic semen analysis. Nuclear DNA fragmentation was assessed using an alkaline Comet assay and concentrations of 7,8-dihydro-8-oxo-2-deoxyguanosine (8-OHdG), an oxidative adduct of the purine guanosine, were assessed by high-performance liquid chromatography. Conventional semen profiles were similar in both groups, whilst spermatozoa from type 1 diabetics showed significantly higher levels of DNA fragmentation (44% versus 27%; P < 0.05) and concentrations of 8-OHdG (3.6 versus 2.0 molecules of 8-OHdG per 105 molecules of deoxyguanosine; P < 0.05). Furthermore, a positive correlation was observed between DNA fragmentation and concentrations of 8-OHdG per 105 molecules of deoxyguanosine (rs = 0.7, P < 0.05). The genomic damage evident in spermatozoa of type 1 diabetics may have important implications for their fertility and the outcome of pregnancies fathered by these individuals.
Resumo:
A novel stir bar sorptive extraction (SBSE) method coupled with high performance liquid chromatography (HPLC) and UV detection for the extraction of diclofenac (DIC) from paediatric urine samples has been developed and validated. Selectivity and sensitivity being the prime objectives of the bioanalytical method for clinical samples, an optimised SBSE protocol was developed that selectively extracted DIC from various concurrently administered drugs. The validated assay was found to be linear (r=0.9999) over a concentration range of 100-2000 ng mL(-1). SBSE showed consistent recoveries (similar to 70%) of DIC across the validated linearity range. Overall, the method exhibited excellent accuracy and precision across all QC concentrations, tested over three days. Calculated LOD and LOQ were found to be 12.03 ng mL(-1) and 36.37 ng mL(-1), respectively, however, for the experimental purposes, 100 ngmL(-1) was considered as the validated LOQ(accuracy and precision at this LQC was
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
Objective: To investigate association of scavenger receptor class B, member 1 (SCARB1) genetic variants with serum carotenoid levels of lutein (L) and zeaxanthin (Z) and macular pigment optical density (MPOD).
Design: A cross-sectional study of healthy adults aged 20 to 70.
Participants: We recruited 302 participants after local advertisement.
Methods: We measured MPOD by customized heterochromatic flicker photometry. Fasting blood samples were taken for serum L and Z measurement by high-performance liquid chromatography and lipoprotein analysis by spectrophotometric assay. Forty-seven single nucleotide polymorphisms (SNPs) across SCARB1 were genotyped using Sequenom technology. Association analyses were performed using PLINK to compare allele and haplotype means, with adjustment for potential confounding and correction for multiple comparisons by permutation testing. Replication analysis was performed in the TwinsUK and Carotenoids in Age-Related Eye Disease Study (CAREDS) cohorts.
Main Outcome Measures: Odds ratios for MPOD area, serum L and Z concentrations associated with genetic variations in SCARB1 and interactions between SCARB1 and gender.
Results: After multiple regression analysis with adjustment for age, body mass index, gender, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, smoking, and dietary L and Z levels, 5 SNPs were significantly associated with serum L concentration and 1 SNP with MPOD (P<0.01). Only the association between rs11057841 and serum L withstood correction for multiple comparisons by permutation testing (P<0.01) and replicated in the TwinsUK cohort (P = 0.014). Independent replication was also observed in the CAREDS cohort with rs10846744 (P = 2×10-4), an SNP in high linkage disequilibrium with rs11057841 (r2 = 0.93). No interactions by gender were found. Haplotype analysis revealed no stronger association than obtained with single SNP analyses.
Conclusions: Our study has identified association between rs11057841 and serum L concentration (24% increase per T allele) in healthy subjects, independent of potential confounding factors. Our data supports further evaluation of the role for SCARB1 in the transport of macular pigment and the possible modulation of age-related macular degeneration risk through combating the effects of oxidative stress within the retina.
Financial Disclosure(s): Proprietary or commercial disclosures may be found after the references. Ophthalmology 2013;120:1632–1640 © 2013 by the American Academy of Ophthalmology.
Resumo:
Significant genotypic difference in response to arsenate toxicity in rice (Oryza sativa) was investigated in root elongation, arsenate uptake kinetics, physiological and biochemical response and arsenic (As) speciation. Uptake kinetics data showed that P-deprived genotype 94D-54 had a little higher As uptake than P-deprived 94D-64, but the difference was not large enough to cause acute toxicity in P-deprived 94D-54. There was no difference in tissue P concentrations between the two genotypes under P deficient conditions. In addition, arsenic speciation in plant tissues (using high performance liquid chromatography-inductively coupled plasma mass spectrometry) was not different between P pretreatments and between genotypes. P-deprived genotype 94D-54 suffered much higher stress induced by arsenate toxicity than P-deprived genotype 94D-64, in terms of lipid peroxidation, tissue H2O2 concentrations and exosmosis of K, P and As. However, P-deprived 94D-54 also had higher overproduction of enzymatic antioxidants (with higher GPX, SOD, CAT) and NPT (non-protein thiols) than P-deprived 94D-64. It appeared that, the higher sensitivity of P-deprived 94D-54 to arsenate toxicity might cause the overproduction of NPT, thus leading to the depletion of GSH and to the accumulation of H2O2. The differential sensitivity of the two genotypes has major implications for breeding rice for As affected paddy soil.
Resumo:
P>In order to gain insights into the transport and distribution of arsenic (As) in intact rice (Oryza sativa) plants and its unloading into the rice grain, we investigated the spatial distribution of As and the temporal variation of As concentration in whole rice plants at different growth stages. To the best of our knowledge, this is the first time that such a study has been performed.
Inductively coupled plasma mass spectroscopy (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS were used to analyze total As concentration and speciation. Moreover, synchrotron-based X-ray fluorescence (SXRF) was used to investigate in situ As distribution in the leaf, internode, node and grain.
Total As concentrations of vegetative tissues increased during the 2 wk after flowering. The concentration of dimethylarsinic acid (DMA) in the caryopsis decreased progressively with its development, whereas inorganic As concentration remained stable. The ratios of As content between neighboring leaves or between neighboring internodes were c. 0.6. SXRF revealed As accumulation in the center of the caryopsis during its early development and then in the ovular vascular trace.
These results indicate that there are different controls on the unloading of inorganic As and DMA; the latter accumulated mainly in the caryopsis before flowering, whereas inorganic As was mainly transported into the caryopsis during grain filling. Moreover, nodes appeared to serve as a check-point in As distribution in rice shoots.
Resumo:
Background
High density lipoproteins (HDL) have many cardioprotective roles; however, in subjects with type 2 diabetes (T2D) these cardioprotective properties are diminished. Conversely, increased fruit and vegetable (F&V) intake may reduce cardiovascular disease risk, although direct trial evidence of a mechanism by which this occurs in subjects with T2D is lacking. Therefore, the aim of this study was to examine if increased F&V consumption influenced the carotenoid content and enzymes associated with the antioxidant properties of HDL in subjects with T2D.
MethodsEighty obese subjects with T2D were randomised to a 1- or ≥6-portion/day F&V diet for 8-weeks. Fasting serum was collected pre- and post-intervention. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Carotenoids were measured in serum, HDL2 and HDL3 by high performance liquid chromatography. The activity of paraoxonase-1 (PON-1) was measured in serum, HDL2 and HDL3 by a spectrophotometric assay, while the activity of lecithin cholesterol acyltransferase (LCAT) was measured in serum, HDL2 and HDL3 by a fluorometric assay.
ResultsIn the ≥6- vs. 1-portion post-intervention comparisons, carotenoids increased in serum, HDL2 and particularly HDL3, (α-carotene, p = 0.008; β-cryptoxanthin, p = 0.042; lutein, p = 0.012; lycopene, p = 0.016), as did the activities of PON-1 and LCAT in HDL3 (p = 0.006 and 0.044, respectively).
ConclusionTo our knowledge, this is the first study in subjects with T2D to demonstrate that increased F&V intake augmented the carotenoid content and influenced enzymes associated with the antioxidant properties of HDL. We suggest that these changes would enhance the cardioprotective properties of this lipoprotein.
Resumo:
We herein present a case of congenital erythrocytosis caused by haemoglobin (Hb) Bethesda in a Japanese family. A 55-year-old asymptomatic man was referred to our hospital for the investigation of erythrocytosis, which was present in other members of his family. The patient's serum erythropoietin level was normal, and the JAK2 V617F mutation was not detected. His P50 value was mildly decreased, thus we suspected the presence of an Hb variant with a high oxygen affinity. The high-performance liquid chromatography analysis showed an abnormal Hb, and by direct sequencing we identified the Hb Bethesda variant in this patient. For the differential diagnosis, we recommend the estimation of the P50 value as a practical and useful test.
Resumo:
The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested.
Resumo:
This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the art on its application to clinical lung cancer studies. Chapter 2 provides the experimental details of this work, in regard to the subjects enrolled, sample collection and analysis, and data processing. In Chapter 3, the metabolic characterization of intact lung tissues (from 56 patients) by proton High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is described. After careful assessment of acquisition conditions and thorough spectral assignment (over 50 metabolites identified), the metabolic profiles of tumour and adjacent control tissues were compared through multivariate analysis. The two tissue classes could be discriminated with 97% accuracy, with 13 metabolites significantly accounting for this discrimination: glucose and acetate (depleted in tumours), together with lactate, alanine, glutamate, GSH, taurine, creatine, phosphocholine, glycerophosphocholine, phosphoethanolamine, uracil nucleotides and peptides (increased in tumours). Some of these variations corroborated typical features of cancer metabolism (e.g., upregulated glycolysis and glutaminolysis), while others suggested less known pathways (e.g., antioxidant protection, protein degradation) to play important roles. Another major and novel finding described in this chapter was the dependence of this metabolic signature on tumour histological subtype. While main alterations in adenocarcinomas (AdC) related to phospholipid and protein metabolisms, squamous cell carcinomas (SqCC) were found to have stronger glycolytic and glutaminolytic profiles, making it possible to build a valid classification model to discriminate these two subtypes. Chapter 4 reports the NMR metabolomic study of blood plasma from over 100 patients and near 100 healthy controls, the multivariate model built having afforded a classification rate of 87%. The two groups were found to differ significantly in the levels of lactate, pyruvate, acetoacetate, LDL+VLDL lipoproteins and glycoproteins (increased in patients), together with glutamine, histidine, valine, methanol, HDL lipoproteins and two unassigned compounds (decreased in patients). Interestingly, these variations were detected from initial disease stages and the magnitude of some of them depended on the histological type, although not allowing AdC vs. SqCC discrimination. Moreover, it is shown in this chapter that age mismatch between control and cancer groups could not be ruled out as a possible confounding factor, and exploratory external validation afforded a classification rate of 85%. The NMR profiling of urine from lung cancer patients and healthy controls is presented in Chapter 5. Compared to plasma, the classification model built with urinary profiles resulted in a superior classification rate (97%). After careful assessment of possible bias from gender, age and smoking habits, a set of 19 metabolites was proposed to be cancer-related (out of which 3 were unknowns and 6 were partially identified as N-acetylated metabolites). As for plasma, these variations were detected regardless of disease stage and showed some dependency on histological subtype, the AdC vs. SqCC model built showing modest predictive power. In addition, preliminary external validation of the urine-based classification model afforded 100% sensitivity and 90% specificity, which are exciting results in terms of potential for future clinical application. Chapter 6 describes the analysis of urine from a subset of patients by a different profiling technique, namely, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Although the identification of discriminant metabolites was very limited, multivariate models showed high classification rate and predictive power, thus reinforcing the value of urine in the context of lung cancer diagnosis. Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the potential of integrated metabolomics of tissues and biofluids to improve current understanding of lung cancer altered metabolism and to reveal new marker profiles with diagnostic value.
Resumo:
Formaldehyde is a toxic component that is present in foundry resins. Its quantification is important to the characterisation of the resin (kind and degradation) as well as for the evaluation of free contaminants present in wastes generated by the foundry industry. The complexity of the matrices considered suggests the need for separative techniques. The method developed for the identification and quantification of formaldehyde in foundry resins is based on the determination of free carbonyl compounds by derivatization with 2,4-dinitrophenylhydrazine (DNPH), being adapted to the considered matrices using liquid chromatography (LC) with UV detection. Formaldehyde determinations in several foundry resins gave precise results. Mean recovery and R.S.D. were, respectively, >95 and 5%. Analyses by the hydroxylamine reference method gave comparable results. Results showed that hydroxylamine reference method is applicable just for a specific kind of resin, while the developed method has good performance for all studied resins.
Resumo:
An analytical method using microwave-assisted extraction (MAE) and liquid chromatography (LC) with fluorescence detection (FD) for the determination of ochratoxin A (OTA) in bread samples is described. A 24 orthogonal composite design coupled with response surface methodology was used to study the influence of MAE parameters (extraction time, temperature, solvent volume, and stirring speed) in order to maximize OTA recovery. The optimized MAE conditions were the following: 25 mL of acetonitrile, 10 min of extraction, at 80 °C, and maximum stirring speed. Validation of the overall methodology was performed by spiking assays at five levels (0.1–3.00 ng/g). The quantification limit was 0.005 ng/g. The established method was then applied to 64 bread samples (wheat, maize, and wheat/maize bread) collected in Oporto region (Northern Portugal). OTAwas detected in 84 % of the samples with a maximum value of 2.87 ng/g below the European maximum limit established for OTA in cereal products of 3 ng/g.
Resumo:
The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.