954 resultados para genetic resistance
Resumo:
Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.
Resumo:
Groundnut rosette disease (GRD) is the most destructive virus disease of Valencia groundnuts ( Arachis hypogaea L.) in sub-Saharan Africa. Cultural, biological and chemical control measures have received limited success due to small scale farmers’ inability to use them. Use of host plant resistance provides the most effective and economically viable management option for the resource poor farmers. This study was conducted to determine heritability for resistance to GRD in Valencia groundnuts. Six crosses; Valencia C (P1) × ICGV-SM 90704 (P2), Valencia C (P1) × ICGV-SM 96801(P2), Valencia C (P1) × ICGV-SM 99566 (P2), NuMex-M3 (P1) × ICGV-SM 90704 (P2), NuMex-M3 × ICGV-SM 96801 (P2), and NuMex-M3 (P1) × ICGV-SM 99566 (P2), were made to generate F1, F2, BC1P1 and BC1P2 populations. Data on GRD severity were collected on a 1-9 score scale. Genetic Advance as a percentage of the mean (GAM) and heritability were estimated using variance components. Phenotypic Coefficient of Variation (PCV) and Genotypic Coefficient of Variation (GCV) estimates were high (20.04-70.1%) in the six crosses, except for Valencia C × ICGV-SM 96801(18.1%) and NuMex-M3 × ICGV-SM 96801(17.1%), which exhibited moderate GCV values. Broad and narrow sense heritability estimates for GRD disease score ranged from 64.1 to 73.7% and 31 to 41.9%, respectively, in all the crosses. GAM was high in all the crosses (21-50.7%), except for Valencia C x ICGV-SM 96801 (14.67), M3 x ICGV-SM 99566 (18%) and NuMex-M3 x ICGV-SM 96801 (13.5%) crosses that exhibited moderate GAM. The study revealed the presence of variability of GRD resistance, implying that genetic improvement of these exotic materials is possible.
Resumo:
In the semi-arid zones of Uganda, pearl millet ( Pennisetum glaucum (L.) R. Br.) is mainly grown for food and income; but rust (Puccinia substriata var indica (L.) R. Br.) is the main foliar constraint lowering yield. The objective of the study was to genetically improve grain yield and rust resistance of two locally adapted populations (Lam and Omoda), through two cycles of modified phenotypic S1 progeny recurrent selection. Treatments included three cycles of two locally adapted pearl millet populations, evaluated at three locations. Significant net genetic gain for grain yield (72 and 36%) were achieved in Lam and Omoda populations, respectively. This led to grain yield of 1,047 from 611 kg ha-1 in Lam population and 943 from 693 kg ha-1 in Omoda population. Significant improvement in rust resistance was achieved in the two populations, with a net genetic gain of -55 and -71% in Lam and Omoda populations, respectively. Rust severity reduced from 30 to 14% in Lam population and from 57 to 17% in Omoda population. Net positive genetic gains of 68 and 8% were also achieved for 1000-grain weight in Lam and Omoda, respectively. Traits with a net negative genetic gain in both populations were days to 50% flowering, days to 50% anthesis, days to 50% physiological maturity, flower-anthesis interval, plant height and leaf area.
Resumo:
Dyslipidemia is a major public health problem, and therefore, it is important to develop dietary strategies to diminish the prevalence of this disorder. It was recently reported that diet may play an important role in triggering insulin resistance by interacting with genetic variants at the CAPN10 gene locus in patients with metabolic syndrome. Nonetheless, it remains unknown whether genetic variants of genes involved in the development of type 2 diabetes are associated with variations in high-density lipoprotein cholesterol (HDL-C). The study used a single-center, prospective, cohort design. Here, we assessed the effect of four variants of the CAPN10 gene on HDL-C levels in response to a soy protein and soluble fiber dietary portfolio in subjects with dyslipidemia. In 31 Mexican dyslipidemic individuals, we analyzed four CAPN10 gene variants (rs5030952, rs2975762, rs3792267, and rs2975760) associated with type 2 diabetes. Subjects with the GG genotype of the rs2975762 variant of the CAPN10 gene were better responders to dietary intervention, showing increased HDL-C concentrations from the first month of treatment. HDL-C concentrations in participants with the wild type genotype increased by 17.0%, whereas the HDL-C concentration in subjects with the variant genotypes increased by only 3.22% (p = 0.03); the low-density lipoprotein cholesterol levels of GG carriers tended to decrease (-12.6%). These results indicate that Mexican dyslipidemic carriers of the rs2975762-GG genotype are better responders to this dietary intervention.
Resumo:
An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem- resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXYOprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.
Resumo:
Toxoplasma gondii is the causative protozoan agent of toxoplasmosis, which is a common infection that is widely distributed worldwide. Studies revealed stronger clonal strains in North America and Europe and genetic diversity in South American strains. Our study aimed to differentiate the pathogenicity and sulfadiazine resistance of three T. gondii isolates obtained from livestock intended for human consumption. The cytopathic effects of the T. gondii isolates were evaluated. The pathogenicity was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using a CS3 marker and in a rodent model in vivo. Phenotypic sulfadiazine resistance was measured using a kinetic curve of drug activity in Swiss mice. IgM and IgG were measured by ELISA, and the dihydropteroate synthase (DHPS) gene sequence was analysed. The cytopathic effects and the PCR-RFLP profiles from chickens indicated a different infection source. The Ck3 isolate displayed more cytopathic effects in vitro than the Ck2 and ME49 strains. Additionally, the Ck2 isolate induced a differential humoral immune response compared to ME49. The Ck3 and Pg1 isolates, but not the Ck2 isolate, showed sulfadiazine resistance in the sensitivity assay. We did not find any DHPS gene polymorphisms in the mouse samples. These atypical pathogenicity and sulfadiazine resistance profiles were not previously reported and served as a warning to local health authorities.
Resumo:
In this study, 123 almond (Prunus dulcis (Mill.) D. A. Webb) trees identified among traditional orchards in the Algarve region and 53 trees of the local field collection managed by the regional office of the Portuguese Ministry of Agriculture (DRAALG) were assessed using isozyme, inter- single sequence repeat and simple sequence repeat or microsatellite techniques for the evaluation of genetic diversity and genetic relatedness and identification of new accessions for the field collection. The isozyme analysis allowed the distribution of the 176 plants into 13 different classes of enzyme similarity, while the use of DNA markers increased the distribution of the analysed trees among 140 discriminating DNA patterns. Multiple cases of homonymy and synonymy were identified in the local germplasm. Some traditional varieties, such as Lourencinha, appeared to be relatively homogeneous, while other local denominations, e.g. Galamba, included diverse genotypes. Of the 13 commercial varieties analysed in this study, 11 assembled in one major cluster clearly differentiated from the majority of the local genotypes. These results reinforced the perception that the Algarve traditional germplasm constitutes an important repository of genetic diversity, eventually carrying alleles of high agricultural interest such as the recently identified Phomopsis resistance in the traditional variety Barrinho Grado.
Resumo:
Based on the evidences presented in this paper, results from classical genetic studies, fine-mapping information and physical position analysis using the reference genome sequence of P. vulgaris, the BIC Genetic Committee has formally accepted the proposed new gene symbols.
Resumo:
In this study, 123 almond (Prunus dulcis (Mill.) D. A. Webb) trees identified among traditional orchards in the Algarve region and 53 trees of the local field collection managed by the regional office of the Portuguese Ministry of Agriculture (DRAALG) were assessed using isozyme, inter- single sequence repeat and simple sequence repeat or microsatellite techniques for the evaluation of genetic diversity and genetic relatedness and identification of new accessions for the field collection. The isozyme analysis allowed the distribution of the 176 plants into 13 different classes of enzyme similarity, while the use of DNA markers increased the distribution of the analysed trees among 140 discriminating DNA patterns. Multiple cases of homonymy and synonymy were identified in the local germplasm. Some traditional varieties, such as Lourencinha, appeared to be relatively homogeneous, while other local denominations, e.g. Galamba, included diverse genotypes. Of the 13 commercial varieties analysed in this study, 11 assembled in one major cluster clearly differentiated from the majority of the local genotypes. These results reinforced the perception that the Algarve traditional germplasm constitutes an important repository of genetic diversity, eventually carrying alleles of high agricultural interest such as the recently identified Phomopsis resistance in the traditional variety Barrinho Grado.
Resumo:
Introduction: Staphylococcus aureus is a pathogen that causes food poisoning as well as hospital and community acquired infections. Objective: Establish the profile of superantigen genes among hospital isolates in relation to clinical specimen type, susceptibility to antibiotics and hospital or community acquisition. Methods: Eighty one isolates obtained from patients at Colombian hospital, were classified by antimicrobial susceptibility, specimen type and hospital or community acquired . The PCR uniplex and multiplex was used for detection of 22 superantigen genes (18 enterotoxins, tsst-1 and three exfoliative toxins). Results: Ninety five point one percent of isolates harbored one or more of the genes with an average of 5.6 genes. Prevalence of individual genes was variable and the most prevalent was seg (51.9%). Thirty nine genotypes were obtained, and the genotype gimnou (complete egc cluster) was the most prevalent alone (16.0%) and in association with other genes (13.6%). The correlation between presence of superantigens and clinical specimen or antimicrobial susceptibility showed no significant difference. But there was significant difference between presence of superantigens and the origin of the isolates, hospital or community acquired (p= 0.049). Conclusions: The results show the variability of the superantigen genes profile in hospital isolates and shows no conclusive relationship with the clinical sample type and antimicrobial susceptibility, but there was correlation with community and hospital isolates. The analysis of the interplay between virulence, epidemic and antibiotic resistance of bacterial populations is needed to predict the future of infectious diseases.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type (ST)1, Clonal Complex(CC)1, SCCmec V is one of the major Livestock-Associated (LA-) lineages in pig farming industry in Italy and is associated with pigs in other European countries. Recently, it has been increasingly detected in Italian dairy cattle herds. The aim of this study was to analyse the differences between ST1 MRSA and methicillin-susceptible S. aureus (MSSA) from cattle and pig herds in Italy and Europe and human isolates. Sixty-tree animal isolates from different holdings and 20 human isolates were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing, SCCmec typing, and by micro-array analysis for several virulence, antimicrobial resistance, and strain/host-specific marker genes. Three major PFGE clusters were detected. The bovine isolates shared a high (≥90% to 100%) similarity with human isolates and carried the same SCCmec type IVa. They often showed genetic features typical of human adaptation or present in human-associated CC1: Immune evasion cluster (IEC) genes sak and scn, or sea; sat and aphA3-mediated aminoglycoside resistance. Contrary, typical markers of porcine origin in Italy and Spain, like erm(A) mediated macrolide-lincosamide-streptograminB, and of vga(A)-mediated pleuromutilin resistance were always absent in human and bovine isolates. Most of ST(CC)1 MRSA from dairy cattle were multidrug-resistant and contained virulence and immunomodulatory genes associated with full capability of colonizing humans. As such, these strains may represent a greater human hazard than the porcine strains. The zoonotic capacity of CC1 LA-MRSA from livestock must be taken seriously and measures should be implemented at farm-level to prevent spill-over.
Resumo:
Antimicrobial resistance is a major health problem. After decades of research, numerous difficulties in tackling resistance have emerged, from the paucity of new antimicrobials to the inefficient contingency plans to reduce the use of antimicrobials; consequently, resistance to these drugs is out of control. Today we know that bacteria from the environment are often at the very origin of the acquired resistance determinants found in hospitals worldwide. Here we define the genetic components that flow from the environment to pathogenic bacteria and thereby confer a quantum increase in resistance levels, as resistance units (RU). Environmental bacteria as well as microbiomes from humans, animals, and food represent an infinite reservoir of RU, which are based on genes that have had, or not, a resistance function in their original bacterial hosts. This brief review presents our current knowledge of antimicrobial resistance and its consequences, with special focus on the importance of an ecologic perspective of antimicrobial resistance. This discipline encompasses the study of the relationships of entities and events in the framework of curing and preventing disease, a definition that takes into account both microbial ecology and antimicrobial resistance. Understanding the flux of RU throughout the diverse ecosystems is crucial to assess, prevent and eventually predict emerging scaffolds before they colonize health institutions. Collaborative horizontal research scenarios should be envisaged and involve all actors working with humans, animals, food and the environment.
Resumo:
UNLABELLED Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.