988 resultados para genetic monitoring
Resumo:
Food and non-alcoholic beverage marketing is recognized as an important factor influencing food choices related to non-communicable diseases. The monitoring of populations' exposure to food and non-alcoholic beverage promotions, and the content of these promotions, is necessary to generate evidence to understand the extent of the problem, and to determine appropriate and effective policy responses. A review of studies measuring the nature and extent of exposure to food promotions was conducted to identify approaches to monitoring food promotions via dominant media platforms. A step-wise approach, comprising ‘minimal’, ‘expanded’ and ‘optimal’ monitoring activities, was designed. This approach can be used to assess the frequency and level of exposure of population groups (especially children) to food promotions, the persuasive power of techniques used in promotional communications (power of promotions) and the nutritional composition of promoted food products. Detailed procedures for data sampling, data collection and data analysis for a range of media types are presented, as well as quantifiable measurement indicators for assessing exposure to and power of food and non-alcoholic beverage promotions. The proposed framework supports the development of a consistent system for monitoring food and non-alcoholic beverage promotions for comparison between countries and over time.
Resumo:
Food labelling on food packaging has the potential to have both positive and negative effects on diets. Monitoring different aspects of food labelling would help to identify priority policy options to help people make healthier food choices. A taxonomy of the elements of health-related food labelling is proposed. A systematic review of studies that assessed the nature and extent of health-related food labelling has been conducted to identify approaches to monitoring food labelling. A step-wise approach has been developed for independently assessing the nature and extent of health-related food labelling in different countries and over time. Procedures for sampling the food supply, and collecting and analysing data are proposed, as well as quantifiable measurement indicators and benchmarks for health-related food labelling.
Resumo:
This paper outlines a step-wise framework for monitoring foods and beverages provided or sold in publicly funded institutions. The focus is on foods in schools, but the framework can also be applied to foods provided or sold in other publicly funded institutions. Data collection and evaluation within this monitoring framework will consist of two components. In component I, information on existing food or nutrition policies and/or programmes within settings would be compiled. Currently, nutrition standards and voluntary guidelines associated with such policies/programmes vary widely globally. This paper, which provides a comprehensive review of such standards and guidelines, will facilitate institutional learnings for those jurisdictions that have not yet established them or are undergoing review of existing ones. In component II, the quality of foods provided or sold in public sector settings is evaluated relative to existing national or sub-national nutrition standards or voluntary guidelines. Where there are no (or only poor) standards or guidelines available, the nutritional quality of foods can be evaluated relative to standards of a similar jurisdiction or other appropriate standards. Measurement indicators are proposed (within ‘minimal’, ‘expanded’ and ‘optimal’ approaches) that can be used to monitor progress over time in meeting policy objectives, and facilitate comparisons between countries.
Resumo:
The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable ‘minimal’, ‘expanded’ and ‘optimal’ measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition.
Resumo:
INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support) aims to monitor and benchmark the healthiness of food environments globally. In order to assess the impact of food environments on population diets, it is necessary to monitor population diet quality between countries and over time. This paper reviews existing data sources suitable for monitoring population diet quality, and assesses their strengths and limitations. A step-wise framework is then proposed for monitoring population diet quality. Food balance sheets (FBaS), household budget and expenditure surveys (HBES) and food intake surveys are all suitable methods for assessing population diet quality. In the proposed ‘minimal’ approach, national trends of food and energy availability can be explored using FBaS. In the ‘expanded’ and ‘optimal’ approaches, the dietary share of ultra-processed products is measured as an indicator of energy-dense, nutrient-poor diets using HBES and food intake surveys, respectively. In addition, it is proposed that pre-defined diet quality indices are used to score diets, and some of those have been designed for application within all three monitoring approaches. However, in order to enhance the value of global efforts to monitor diet quality, data collection methods and diet quality indicators need further development work.
Resumo:
Many wild koala populations in Australia continue to experience serious declines due to factors such as disease caused by Chlamydia. This thesis is the first of its kind to investigate diversity of the chlamydial infections in wild koala populations across Australia and has made significant progress towards the development of a vaccine for koalas. The findings in this study have demonstrated that it is feasible to develop a safe and effective recombinant vaccine against Chlamydia in both disease free as well as severely diseased koalas. Most importantly, this study is also first of its kind to evaluate a multi-component vaccine that should be effective against the range of Chlamydia pecorum strains circulating in both captive as well as wild koala populations.
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.
Resumo:
Persistent monitoring of the ocean is not optimally accomplished by repeatedly executing a fixed path in a fixed location. The ocean is dynamic, and so should the executed paths to monitor and observe it. An open question merging autonomy and optimal sampling is how and when to alter a path/decision, yet achieve desired science objectives. Additionally, many marine robotic deployments can last multiple weeks to months; making it very difficult for individuals to continuously monitor and retask them as needed. This problem becomes increasingly more complex when multiple platforms are operating simultaneously. There is a need for monitoring and adaptation of the robotic fleet via teams of scientists working in shifts; crowds are ideal for this task. In this paper, we present a novel application of crowd-sourcing to extend the autonomy of persistent-monitoring vehicles to enable nonrepetitious sampling over long periods of time. We present a framework that enables the control of a marine robot by anybody with an internet-enabled device. Voters are provided current vehicle location, gathered science data and predicted ocean features through the associated decision support system. Results are included from a simulated implementation of our system on a Wave Glider operating in Monterey Bay with the science objective to maximize the sum of observed nitrate values collected.
Resumo:
Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called "residual order spectrogram", i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.
Resumo:
This workshop was supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS, http://www.aceas.org.au/), a facility of the Australian Government-funded Terrestrial Ecosystem Research Network (http://www.tern.org.au/), a research infrastructure facility established under the National Collaborative Research Infrastructure Strategy and Education Infrastructure Fund - Super Science Initiative, through the Department of Industry, Innovation, Science, Research and Tertiary Education. Hosted by: Queensland University of Technology, Brisbane, Queensland. (QUT, http://www.qut.edu.au/) Dates: 8-11 May 2012 Report Editors: Prof Stuart Parsons (Uni. Auckland, NZ) and Dr Michael Towsey (QUT). This report is a compilation of notes and discussion summaries contributed by those attending the Workshop. They have been assembled into a logical order by the editors. Another report (with photographs) can be obtained at: http://www.aceas.org.au/index.php?option=com_content&view=article&id=94&Itemid=96
Resumo:
Emerging infectious diseases present a complex challenge to public health officials and governments; these challenges have been compounded by rapidly shifting patterns of human behaviour and globalisation. The increase in emerging infectious diseases has led to calls for new technologies and approaches for detection, tracking, reporting, and response. Internet-based surveillance systems offer a novel and developing means of monitoring conditions of public health concern, including emerging infectious diseases. We review studies that have exploited internet use and search trends to monitor two such diseases: influenza and dengue. Internet-based surveillance systems have good congruence with traditional surveillance approaches. Additionally, internet-based approaches are logistically and economically appealing. However, they do not have the capacity to replace traditional surveillance systems; they should not be viewed as an alternative, but rather an extension. Future research should focus on using data generated through internet-based surveillance and response systems to bolster the capacity of traditional surveillance systems for emerging infectious diseases.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.