877 resultados para gastric anti-ulcer activity
Resumo:
The thesis mainly discussed the isolation and identification of a probiotic Lactobacillus plantarum, fermentative production of exopolysaccharide by the strain, its purification, structural characterisation and possible applications in food industry and therapeutics. The studies on the probiotic characterization explored the tolerance of the isolated LAB cultures to acid, bile, phenol, salt and mucin binding. These are some of the key factors that could satisfy the criteria for probiotic strains . The important factors required for a high EPS production in submerged fermentation was investigated with a collection of statistical and mathematical approach. Chapter 5 of the thesis explains the structural elucidation of EPS employing spectroscopic and chromatographic techniques. The studies helped in the exploration of the hetero-polysaccharide sequence from L. plantarum MTCC 9510. The thesis also explored the bioactivities of EPS from L. plantarum. As majority of chemical compounds identified as anti-cancerous are toxic to normal cells, the discovery and identification of new safe drugs has become an important goal of research in the biomedical sciences. The thesis has explored the anti-oxidant, anti-tumour and immunomodulating properties of EPS purified from Lactobacillus plantarum. The presence of (1, 3) linkages and its molecular weight presented the EPS with anti-oxidant, anti-tumour and immunomodulating properties under in vitro conditions.
Resumo:
The source of samonella cross contamination in 15 retail chicken outlets in aresidual area in coimbatore city ,sourthern India was studied. Chopping boards and the butchers hands were predominant followed by knives and the weighing balance tray. Serotyping of the salmonella strains revealed that all strains were salmonella enteritis, except one which was found to be salmonella cerro.The anti bacterial activity of commonly used spices were evaluated.
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.
Resumo:
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.
Resumo:
Este artículo considera el período comprendido entre la segunda mitad de los 90, cuando aparecieron “grupos paramilitares” en Cundinamarca y Bogotá, y mediados de la primera década de este siglo, cuando fueron desmanteladas algunas de estas estructuras por parte de las autoridades, hubo entrega de armas por otras y surgieron organizaciones paramilitares “sustitutas” que permanecen activas en el ámbito territorial referido en este estudio. Destaca la actividad “antiinsurgente” desarrollada por los paramilitares en zonas coincidentes con aquellas donde las Fuerzas Militares adelantaron operaciones contrainsurgentes. Además, documenta el proceso de transformación y desintegración que sufrieron en el centro del país algunas estructuras paramilitares que acogieron el proceso de diálogo con el gobierno Uribe como parte de las Autodefensas Unidas de Colombia –AUC–a la vez que enfrentaban una “guerra interna” con otros grupos paramilitares recalcitrantes a participar del acuerdo. Finalmente presenta una apreciación sobre la evolución futura de los “ejércitos privados” que perviven luego de culminado el desarme de las AUC.-----This article surveys the period that covers the second half of the 1990’s, when “paramilitary groups” became visible in Cundinamarca and Bogotá, and the first half of the present decade, when a number of these structures were diminished as a result of law enforcement operations, a few others engaged in disarmament and new “substitute” paramilitary outfits emerged in the area referred by this study. It highlights the “anti-insurgent” activity of the paramilitary in areas that overlap with those where regular military forces carried out counterinsurgent operations. It also references the process of transformation and disintegration of paramilitary units in central Colombia that joined peace talks with the Uribe administration as part of the Autodefensas Unidas de Colombia –AUC–, as they simultaneously engaged in an “internal war” with other paramilitary groups reluctant to the agreement. It concludes with an appreciation about the future evolution of those “private armies” which endure after the AUC disarmament.
Resumo:
The antifeedant activities of Piper guineense Schum et Thonn (Piperaceae), Aframomum melegueta (Rosk) K. Schum (Zingiberaceae), Aframomum citratum (Pareira) K. Schum (Zingiberaceae) and Afrostyrax kamerunensis Perkins and Gilg (Huaceae) seed extracts were investigated in laboratory dual- and no-choice bioassays using third-instar Spodoptera littoralis (Boisduval) larvae. In the dual-choice test, the hexane and methanol extracts of A. melegueta showed potent dose-dependent antifeedant activity at concentrations of ≥300 ppm and the water extract at ≥500 ppm, as illustrated by significantly lower leaf consumptions. Aframomum citratum methanol and water extracts exhibited antifeedant activity at ≥300 and ≥1000 ppm, respectively, but the hexane and ethanol extracts did not affect feeding at any concentration. Piper guineense ethanol and water extracts showed dose-dependent antifeedant effects at ≥300 and ≥500 ppm, respectively, and the methanol extract was active only at 1000 ppm. None of the extracts of the highly aromatic A. kamerunensis exhibited antifeedant activity at any of the tested concentrations. In the no-choice bioassays, extracts with antifeedant activity in the dual-choice tests also showed dose-dependent feeding inhibition. The hexane and methanol extracts of A. melegueta were effective in the no-choice tests at ≥100 and ≥500 ppm, respectively, and the water extract at ≥300 ppm. Similarly, the A. citratum water and methanol extracts were active at ≥500 ppm and the P. guineense water and ethanol extracts at ≥100 ppm. GC/MS chromatography of A. melegueta hexane and methanol extracts revealed volatile constituents with known anti-insect activity. The hexane and methanol extracts of A. melegueta, the methanol extract of A. citratum and the water and ethanol extracts of P. guineense may have potential for use by subsistence farmers.
Resumo:
Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain. They exert anti-HIV activity by interfering with the HIV envelope glycoprotein ( Env)/cell-surface interaction. Env also binds cell-surface glycosaminoglycans. Here, using surface plasmon resonance, we observed an inverse relationship between heparin binding by gp120 and its thiol content. In vitro, and in conditions in which gp120 could bind CD4, heparin and heparan sulfate reduced PDI-mediated gp120 reduction by approximately 80%. Interaction of Env with the surface of lymphocytes treated using sodium chlorate, an inhibitor of glycosaminoglycan synthesis, led to gp120 reduction. We conclude that besides their capacity to block Env/cell interaction, soluble glycosaminoglycans can effect anti-HIV activity via interference with PDI- mediated gp120 reduction. In contrast, their presence at the cell surface is dispensable for Env reduction during the course of interaction with the lymphocyte surface. This work suggests that the reduction of exofacial proteins in various diseases can be inhibited by compounds targeting the substrates ( not by targeting PDI, as is usually done), and that glycosaminoglycans that primarily protect proteins by preserving them from proteolysis also have a role in preventing reduction.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytorchrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.
Resumo:
Single-stage continuous fermentation systems were employed to examine the effects of GanedenBC30 supplementation on the human gastrointestinal microbiota in relation to pathogen challenge in vitro. Denaturing gradient gel electrophoresis analysis demonstrated that GanedenBC30 supplementation modified the microbial profiles in the fermentation systems compared with controls, with profiles clustering according to treatment. Overall, GanedenBC30 supplementation did not elicit major changes in bacterial population counts in vitro, although notably higher Bcoa191 counts were seen following probiotic supplementation (compared to the controls). Pathogen challenge did not elicit significant modification of the microbial counts in vitro, although notably higher Clit135 counts were seen in the control system post-Clostridium difficile challenge than in the corresponding GanedenBC30-supplemented systems. Sporulation appears to be associated with the anti-microbial activity of GanedenBC30, suggesting that a bi-modal lifecycle of GanedenBC30 in vivo may lead to anti-microbial activity in distal regions of the gastrointestinal tract.
Resumo:
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10− 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.
Resumo:
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Resumo:
The composition of polyphenols in ileal fluid samples obtained from an ileostomy subject after lingonberry intake was compared with lingonberry extracts obtained after simulated in vitro digestion (IVDL) and subsequent faecal fermentation (IVFL). HPLC-PDA-MS/MS analysis confirmed similar patterns of lingonberry (poly)phenolic metabolism after the in vivo and in vitro digestion, with reduced recovery of anthocyanins and a similar pattern of recovery for proanthocyanidins observed for both methods of digestion. On the other hand, the IVFL sample contained none of the original (poly)phenolic components but was enriched in simple aromatic components. Digested and fermented extracts exhibited significant (P < 0.05) anti-genotoxic (Comet assay), anti-mutagenic (Mutation Frequency assay), and anti-invasive (Matrigel Invasion assay) effects in human cell culture models of colorectal cancer at physiologically-relevant doses (0-50 μg/mL gallic acid equivalents). The ileal fluid induced significant anti-genotoxic activity (P < 0.05), but at a higher concentration (200 μg/mL gallic acid equivalents) than the IVDL. Despite extensive structural modification following digestion and fermentation, lingonberry extracts retained their bioactivity in vitro. This reinforces the need for studies to consider the impact of digestion when investigating bioactivity of dietary phytochemicals.
Resumo:
Resistance to the innate defences of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common coloniser of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent anti-microbial activity. The mechanisms by which S. aureus is able to resist such defences in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates efflux of radiolabelled cholic acid in both S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated survival of S. aureus in an anaerobic three stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine.