988 resultados para galaxies: jets
Resumo:
Three-dimensional spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of principal component analysis (PCA) tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a low-ionization nuclear-emitting region (LINER) with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA tomography. We anticipate that the scattered image has polarized light due to its scattered nature.
Resumo:
Context. Abundance variations in moderately metal-rich globular clusters can give clues about the formation and chemical enrichment of globular clusters. Aims. CN, CH, Na, Mg and Al indices in spectra of 89 stars of the template metal-rich globular cluster M71 are measured and implications on internal mixing are discussed. Methods. Stars from the turn-off up to the Red Giant Branch (0.87 < log g < 4.65) observed with the GMOS multi-object spectrograph at the Gemini-North telescope are analyzed. Radial velocities, colours, effective temperatures, gravities and spectral indices are determined for the sample. Results. Previous findings related to the CN bimodality and CN-CH anticorrelation in stars of M71 are confirmed. We also find a CN-Na correlation, and Al-Na, as well as an Mg(2)-Al anticorrelation. Conclusions. A combination of convective mixing and a primordial pollution by AGB or massive stars in the early stages of globular cluster formation is required to explain the observations.
Resumo:
Context. The luminous material in clusters of galaxies exists in two forms: the visible galaxies and the X-ray emitting intra-cluster medium. The hot intra-cluster gas is the major observed baryonic component of clusters, about six times more massive than the stellar component. The mass contained within visible galaxies is approximately 3% of the dynamical mass. Aims. Our aim was to analyze both baryonic components, combining X-ray and optical data of a sample of five galaxy clusters (Abell 496, 1689, 2050, 2631 and 2667), within the redshift range 0.03 < z < 0.3. We determined the contribution of stars in galaxies and the intra-cluster medium to the total baryon budget. Methods. We used public XMM-Newton data to determine the gas mass and to obtain the X-ray substructures. Using the optical counterparts from SDSS or CFHT we determined the stellar contribution. Results. We examine the relative contribution of galaxies, intra-cluster light and intra-cluster medium to baryon budget in clusters through the stellar-to-gas mass ratio, estimated with recent data. We find that the stellar-to-gas mass ratio within r(500) (the radius within which the mean cluster density exceeds the critical density by a factor of 500), is anti-correlated with the ICM temperature, which range from 24% to 6% while the temperature ranges from 4.0 to 8.3 keV. This indicates that less massive cold clusters are more prolific star forming environments than massive hot clusters.
Resumo:
Context. Rotation curves of interacting galaxies often show that velocities are either rising or falling in the direction of the companion galaxy. Aims. We seek to reproduce and analyse these features in the rotation curves of simulated equal-mass galaxies suffering a one-to-one encounter as possible indicators of close encounters. Methods. Using simulations of major mergers in 3D, we study the time evolution of these asymmetries in a pair of galaxies during the first passage. Results. Our main results are: (a) the rotation curve asymmetries appear right at pericentre of the first passage, (b) the significant disturbed rotation velocities occur within a small time interval, of similar to 0.5 Gyr h(-1), and, therefore, the presence of bifurcation in the velocity curve could be used as an indicator of the pericentre occurrence. These results are in qualitative agreement with previous findings for minor mergers and flybys.
Resumo:
Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields similar to mu G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) similar to 10 mu G over a comoving similar to 1 pc region are predicted at redshift z similar to 10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs similar to 10(-2) mu G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z similar to 10. In the collapse to a galaxy (comoving size similar to 30 kpc) at z similar to 10, the fields are amplified to similar to 10 mu G. This indicates that the MFs created immediately after the QHPT (10(-4) s), predicted by the fluctuation-dissipation theorem, could be the origin of the similar to mu G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.
Resumo:
Aims. We present the analysis of the [alpha/Fe] abundance ratios for a large number of stars at several locations in the Milky Way bulge with the aim of constraining its formation scenario. Methods. We obtained FLAMES-GIRAFFE spectra (R = 22 500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b = -4 degrees, b = -6 degrees, b = -12 degrees. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b = -3 degrees and 5 degrees away from the other three fields along the major axis. Stellar parameters and metallicities for these stars were presented in Zoccali et al. (2008, A&A, 486, 177). We have also re-derived stellar parameters and abundances for the sample of thick and thin disk red giants analyzed in Alves-Brito et al. (2010, A&A, 513, A35). Therefore using a homogeneous abundance database for the bulge, thick and thin disk, we have performed a differential analysis minimizing systematic errors, to compare the formation scenarios of these Galactic components. Results. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b = -4 degrees disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H] < -0.2) show a remarkable homogeneity at different bulge locations. Conclusions. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.
Resumo:
We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different (similar to 1-4%) from the one provided by the conventional flat Lambda CDM cosmology. The growth rate of clustering predicted by MGCDM and Lambda CDM models are confronted to the observations and the corresponding best fit values of the growth index (gamma) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Lambda CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from Lambda CDM and also from a large number of dark energy models recently proposed in the literature.
Resumo:
Context. Observations in the cosmological domain are heavily dependent on the validity of the cosmic distance-duality (DD) relation, eta = D(L)(z)(1+ z)(2)/D(A)(z) = 1, an exact result required by the Etherington reciprocity theorem where D(L)(z) and D(A)(z) are, respectively, the luminosity and angular diameter distances. In the limit of very small redshifts D(A)(z) = D(L)(z) and this ratio is trivially satisfied. Measurements of Sunyaev-Zeldovich effect (SZE) and X-rays combined with the DD relation have been used to determine D(A)(z) from galaxy clusters. This combination offers the possibility of testing the validity of the DD relation, as well as determining which physical processes occur in galaxy clusters via their shapes. Aims. We use WMAP (7 years) results by fixing the conventional Lambda CDM model to verify the consistence between the validity of DD relation and different assumptions about galaxy cluster geometries usually adopted in the literature. Methods. We assume that. is a function of the redshift parametrized by two different relations: eta(z) = 1+eta(0)z, and eta(z) = 1+eta(0)z/(1+z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we consider the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical (isothermal) and spherical (non-isothermal) beta models. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. It was found that the elliptical beta model is in good agreement with the data, showing no violation of the DD relation (PDF peaked close to eta(0) = 0 at 1 sigma), while the spherical (non-isothermal) one is only marginally compatible at 3 sigma. Conclusions. The present results derived by combining the SZE and X-ray surface brightness data from galaxy clusters with the latest WMAP results (7-years) favors the elliptical geometry for galaxy clusters. It is remarkable that a local property like the geometry of galaxy clusters might be constrained by a global argument provided by the cosmic DD relation.
Resumo:
Context. Fossil systems are defined to be X- ray bright galaxy groups ( or clusters) with a two- magnitude difference between their two brightest galaxies within half the projected virial radius, and represent an interesting extreme of the population of galaxy agglomerations. However, the physical conditions and processes leading to their formation are still poorly constrained. Aims. We compare the outskirts of fossil systems with that of normal groups to understand whether environmental conditions play a significant role in their formation. We study the groups of galaxies in both, numerical simulations and observations. Methods. We use a variety of statistical tools including the spatial cross- correlation function and the local density parameter Delta(5) to probe differences in the density and structure of the environments of "" normal"" and "" fossil"" systems in the Millennium simulation. Results. We find that the number density of galaxies surrounding fossil systems evolves from greater than that observed around normal systems at z = 0.69, to lower than the normal systems by z = 0. Both fossil and normal systems exhibit an increment in their otherwise radially declining local density measure (Delta(5)) at distances of order 2.5 r(vir) from the system centre. We show that this increment is more noticeable for fossil systems than normal systems and demonstrate that this difference is linked to the earlier formation epoch of fossil groups. Despite the importance of the assembly time, we show that the environment is different for fossil and non- fossil systems with similar masses and formation times along their evolution. We also confirm that the physical characteristics identified in the Millennium simulation can also be detected in SDSS observations. Conclusions. Our results confirm the commonly held belief that fossil systems assembled earlier than normal systems but also show that the surroundings of fossil groups could be responsible for the formation of their large magnitude gap.
Resumo:
The A1763 superstructure at z = 0.23 contains the first galaxy filament to be directly detected using mid-infrared observations. Our previous work has shown that the frequency of starbursting galaxies, as characterized by 24 mu m emission is much higher within the filament than at either the center of the rich galaxy cluster, or the field surrounding the system. New Very Large Array and XMM-Newton data are presented here. We use the radio and X-ray data to examine the fraction and location of active galaxies, both active galactic nuclei (AGNs) and starbursts (SBs). The radio far-infrared correlation, X-ray point source location, IRAC colors, and quasar positions are all used to gain an understanding of the presence of dominant AGNs. We find very few MIPS-selected galaxies that are clearly dominated by AGN activity. Most radio-selected members within the filament are SBs. Within the supercluster, three of eight spectroscopic members detected both in the radio and in the mid-infrared are radio-bright AGNs. They are found at or near the core of A1763. The five SBs are located further along the filament. We calculate the physical properties of the known wide angle tail (WAT) source which is the brightest cluster galaxy of A1763. A second double lobe source is found along the filament well outside of the virial radius of either cluster. The velocity offset of the WAT from the X-ray centroid and the bend of the WAT in the intracluster medium are both consistent with ram pressure stripping, indicative of streaming motions along the direction of the filament. We consider this as further evidence of the cluster-feeding nature of the galaxy filament.
Resumo:
In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, eta = D(L)(z)(1 + z)(-2)/D(A)(z) = 1, where D(L) and D(A) are, respectively, the luminosity and angular diameter distances. For D(L) we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D(A) distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Delta z < 0.005), thereby allowing a direct test of the DD relation. Since for very low redshifts, D(A)(z) approximate to D(L)(z), we have tested the DD relation by assuming that. is a function of the redshift parameterized by two different expressions: eta(z) = 1 + eta(0)z and eta(z) = 1 +eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (eta(0) = 0). In the best scenario (linear parameterization), we obtain eta(0) = -0.28(-0.44)(+0.44) (2 sigma, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is eta(0) = -0.42(-0.34)(+0.34) (3 sigma, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the (7)Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
Context. The distribution of chemical abundances and their variation with time are important tools for understanding the chemical evolution of galaxies. In particular, the study of chemical evolution models can improve our understanding of the basic assumptions made when modelling our Galaxy and other spirals. Aims. We test a standard chemical evolution model for spiral disks in the Local Universe and study the influence of a threshold gas density and different efficiencies in the star formation rate (SFR) law on radial gradients of abundance, gas, and SFR. The model is then applied to specific galaxies. Methods. We adopt a one-infall chemical evolution model where the Galactic disk forms inside-out by means of infall of gas, and we test different thresholds and efficiencies in the SFR. The model is scaled to the disk properties of three Local Group galaxies (the Milky Way, M31 and M33) by varying its dependence on the star formation efficiency and the timescale for the infall of gas onto the disk. Results. Using this simple model, we are able to reproduce most of the observed constraints available in the literature for the studied galaxies. The radial oxygen abundance gradients and their time evolution are studied in detail. The present day abundance gradients are more sensitive to the threshold than to other parameters, while their temporal evolutions are more dependent on the chosen SFR efficiency. A variable efficiency along the galaxy radius can reproduce the present day gas distribution in the disk of spirals with prominent arms. The steepness in the distribution of stellar surface density differs from massive to lower mass disks, owing to the different star formation histories. Conclusions. The most massive disks seem to have evolved faster (i.e., with more efficient star formation) than the less massive ones, thus suggesting a downsizing in star formation for spirals. The threshold and the efficiency of star formation play a very important role in the chemical evolution of spiral disks. For instance, an efficiency varying with radius can be used to regulate the star formation. The oxygen abundance gradient can steepen or flatten in time depending on the choice of this parameter.