988 resultados para frequency adaptive averaging window
Resumo:
Les thérapies du cancer, comme la radiothérapie et la chimiothérapie, sont couramment utilisées mais ont de nombreux effets secondaires. Ces thérapies invasives pour le patient nécessitent d'être améliorées et de nombreuses avancées ont été faites afin d'adapter et de personnaliser le traitement du cancer. L'immunothérapie a pour but de renforcer le système immunitaire du patient et de le rediriger de manière spécifique contre la tumeur. Dans notre projet, nous activons les lymphocytes Invariant Natural Killer T (iNKT) afin de mettre en place une immunothérapie innovatrice contre le cancer. Les cellules iNKT sont une unique sous-population de lymphocytes T qui ont la particularité de réunir les propriétés de l'immunité innée ainsi qu'adaptative. En effet, les cellules iNKT expriment à leur surface des molécules présentes aussi sur les cellules tueuses NK, caractéristique de l'immunité innée, ainsi qu'un récepteur de cellules T (TCR) qui représente l'immunité adaptative. Les cellules iNKT reconnaissent avec leur TCR des antigènes présentés par la molécule CD1d. Les antigènes sont des protéines, des polysaccharides ou des lipides reconnus par les cellules du système immunitaire ou les anticorps pour engendrer une réponse immunitaire. Dans le cas des cellules iNKT, l'alpha-galactosylceramide (αGC) est un antigène lipidique fréquemment utilisé dans les études cliniques comme puissant activateur. Après l'activation des cellules iNKT avec l'αGC, celles-ci produisent abondamment et rapidement des cytokines. Ces cytokines sont des molécules agissant comme des signaux activateurs d'autres cellules du système immunitaire telles que les cellules NK et les lymphocytes T. Cependant, les cellules iNKT deviennent anergiques après un seul traitement avec l'αGC c'est à dire qu'elles ne peuvent plus être réactivées, ce qui limite leur utilisation dans l'immunothérapie du cancer. Dans notre groupe, Stirnemann et al ont publié une molécule recombinante innovante, composée de la molécule CD1d soluble et chargée avec le ligand αGC (αGC/sCD1d). Cette protéine est capable d'activer les cellules iNKT tout en évitant l'anergie. Dans le système immunitaire, les anticorps sont indispensables pour combattre une infection bactérienne ou virale. En effet, les anticorps ont la capacité de reconnaître et lier spécifiquement un antigène et permettent l'élimination de la cellule qui exprime cet antigène. Dans le domaine de l'immunothérapie, les anticorps sont utilisés afin de cibler des antigènes présentés seulement par la tumeur. Ce procédé permet de réduire efficacement les effets secondaires lors du traitement du cancer. Nous avons donc fusionné la protéine recombinante αGC/CD1d à un fragment d'anticorps qui reconnaît un antigène spécifique des cellules tumorales. Dans une étude préclinique, nous avons démontré que la protéine αGC/sCD1d avec un fragment d'anticorps dirigé contre la tumeur engendre une meilleure activation des cellules iNKT et entraîne un effet anti-tumeur prolongé. Cet effet anti-tumeur est augmenté comparé à une protéine αGC/CD1d qui ne cible pas la tumeur. Nous avons aussi montré que l'activation des cellules iNKT avec la protéine αGC/sCD1d-anti-tumeur améliore l'effet anti- tumoral d'un vaccin pour le cancer. Lors d'expériences in vitro, la protéine αGC/sCD1d-anti- tumeur permet aussi d'activer les cellules humaines iNKT et ainsi tuer spécifiquement les cellules tumorales humaines. La protéine αGC/sCD1d-anti-tumeur représente une alternative thérapeutique prometteuse dans l'immunothérapie du cancer. - Les cellules Invariant Natural Killer T (iNKT), dont les effets anti-tumoraux ont été démontrés, sont de puissants activateurs des cellules Natural Killer (NK), des cellules dendritiques (DC) et des lymphocytes T. Cependant, une seule injection du ligand de haute affinité alpha-galactosylceramide (αGC) n'induit une forte activation des cellules iNKT que durant une courte période. Celle-ci est alors suivie d'une longue phase d'anergie, limitant ainsi leur utilisation pour la thérapie. Comme alternative prometteuse, nous avons montré que des injections répétées d'αGC chargé sur une protéine recombinante de CD1d soluble (αGC/sCD1d) chez la souris entraînent une activation prolongée des cellules iNKT, associée à une production continue de cytokine. De plus, le maintien de la réactivité des cellules iNKT permet de prolonger l'activité anti-tumorale lorsque la protéine αGC/sCD1d est fusionnée à un fragment d'anticorps (scFv) dirigé contre la tumeur. L'inhibition de la croissance tumorale n'est optimale que lorsque les souris sont traitées avec la protéine αGC/sCD1d-scFv ciblant la tumeur, la protéine αGC/sCD1d-scFv non-appropriée étant moins efficace. Dans le système humain, les protéines recombinantes αGC/sCD1d-anti-HER2 et anti-CEA sont capables d'activer et de faire proliférer des cellules iNKT à partir de PBMCs issues de donneurs sains. De plus, la protéine αGC/sCD1d-scFv a la capacité d'activer directement des clones iNKT humains en l'absence de cellules présentatrices d'antigènes (CPA), contrairement au ligand αGC libre. Mais surtout, la lyse des cellules tumorales par les iNKT humaines n'est obtenue que lorsqu'elles sont incubées avec la protéine αGC/sCD1d-scFv anti- tumeur. En outre, la redirection de la cytotoxicité des cellules iNKT vers la tumeur est supérieure à celle obtenue avec une stimulation par des CPA chargées avec l'αGC. Afin d'augmenter les effets anti-tumoraux, nous avons exploité la capacité des cellules iNKT à activer l'immunité adaptive. Pour ce faire, nous avons combiné l'immunothérapie NKT/CD1d avec un vaccin anti-tumoral composé d'un peptide OVA. Des effets synergiques ont été obtenus lorsque les traitements avec la protéine αGC/sCD1d-anti-HER2 étaient associés avec le CpG ODN comme adjuvant pour la vaccination avec le peptide OVA. Ces effets ont été observés à travers l'activation de nombreux lymphocytes T CD8+ spécifique de la tumeur, ainsi que par la forte expansion des cellules NK. Les réponses, innée et adaptive, élevées après le traitement avec la protéine αGC/sCD1d-anti-HER2 combinée au vaccin OVA/CpG ODN étaient associées à un fort ralentissement de la croissance des tumeurs B16- OVA-HER2. Cet effet anti-tumoral corrèle avec l'enrichissement des lymphocytes T CD8+ spécifiques observé à la tumeur. Afin d'étendre l'application des protéines αGC/sCD1d et d'améliorer leur efficacité, nous avons développé des fusions CD1d alternatives. Premièrement, une protéine αGC/sCD1d dimérique, qui permet d'augmenter l'avidité de la molécule CD1d pour les cellules iNKT. Dans un deuxième temps, nous avons fusionné la protéine αGC/sCD1d avec un scFv dirigé contre le récepteur 3 du facteur de croissance pour l'endothélium vasculaire (VEGFR-3), afin de cibler l'environnement de la tumeur. Dans l'ensemble, ces résultats démontrent que la thérapie médiée par la protéine recombinante αGC/sCD1d-scFv est une approche prometteuse pour rediriger l'immunité innée et adaptive vers le site tumoral. - Invariant Natural Killer T cells (iNKT) are potent activators of Natural Killer (NK), dendritic cells (DC) and T lymphocytes, and their anti-tumor activities have been well demonstrated. However, a single injection of the high affinity CD1d ligand alpha-galactosylceramide (αGC) leads to a strong but short-lived iNKT cell activation followed by a phase of long-term anergy, limiting the therapeutic use of this ligand. As a promising alternative, we have demonstrated that when αGC is loaded on recombinant soluble CD1d molecules (αGC/sCD1d), repeated injections in mice led to the sustained iNKT cell activation associated with continued cytokine secretion. Importantly, the retained reactivity of iNKT cell led to prolonged antitumor activity when the αGC/sCD1d was fused to an anti-tumor scFv fragments. Optimal inhibition of tumor growth was obtained only when mice were treated with the tumor-targeted αGC/CD1d-scFv fusion, whereas the irrelevant αGC/CD1d-scFv fusion was less efficient. When tested in a human system, the recombinant αGC/sCD1d-anti-HER2 and -anti-CEA fusion proteins were able to expand iNKT cells from PBMCs of healthy donors. Furthermore, the αGC/sCD1d-scFv fusion had the capacity to directly activate human iNKT cells clones without the presence of antigen-presenting cells (APCs), in contrast to the free αGC ligand. Most importantly, tumor cell killing by human iNKT cells was obtained only when co- incubated with the tumor targeted sCD1d-antitumor scFv, and their direct tumor cytotoxicity was superior to the bystander killing obtained with αGC-loaded APCs stimulation. To further enhance the anti-tumor effects, we exploited the ability of iNKT cells to transactivate the adaptive immunity, by combining the NKT/CD1d immunotherapy with a peptide cancer vaccine. Interestingly, synergistic effects were obtained when the αGC/sCD1d- anti-HER2 fusion treatment was combined with CpG ODN as adjuvant for the OVA peptide vaccine, as seen by higher numbers of activated antigen-specific CD8 T cells and NK cells, as compared to each regimen alone. The increased innate and adaptive immune responses upon combined tumor targeted sCD1d-scFv treatment and OVA/CpG vaccine were associated with a strong delay in B16-OVA-HER2 melanoma tumor growth, which correlated with an enrichment of antigen-specific CD8 cells at the tumor site. In order to extend the application of the CD1d fusion, we designed alternative CD1d fusion proteins. First, a dimeric αGC/sCD1d-Fc fusion, which permits to augment the avidity of the CD1d for iNKT cells and second, an αGC/sCD1d fused to an anti vascular endothelial growth factor receptor-3 (VEGFR-3) scFv, in order to target tumor stroma environment. Altogether, these results demonstrate that the iNKT-mediated immunotherapy via recombinant αGC/sCD1d-scFv fusion is a promising approach to redirect the innate and adaptive antitumor immune response to the tumor site.
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Mucosal surfaces represent the main sites in which environmental microorganisms and antigens interact with the host. Sentinel cells, including epithelial cells, lumenal macrophages, and intraepithelial dendritic cells, continuously sense the environment and coordinate defenses for the protection of mucosal tissues. The mucosal epithelial cells are crucial actors in coordinating defenses. They sense the outside world and respond to environmental signals by releasing chemokines and cytokines that recruit inflammatory and immune cells to control potential infectious agents and to attract cells able to trigger immune responses. Among immune cells, dendritic cells (DC) play a key role in controlling adaptive immune responses, due to their capacity to internalize foreign materials and to present antigens to naive T and B lymphocytes, locally or in draining organized lymphoid tissues. Immune cells recruited in epithelial tissues can, in turn, act upon the epithelial cells and change their phenotype in a process referred to as epithelial metaplasia.
Resumo:
This paper develops a theoretical model for the demand of alcohol where intensity and frequency of consumption are separate choices made by individuals in order to maximize their utility. While distinguishing between intensity and frequency of consumption may be unimportant for many goods, this is clearly not the case with alcohol where the likelihood of harm depends not only on the total consumed but also on the pattern of use. The results from the theoretical model are applied to data from rural Australia in order to investigate the factors that affect the patterns of alcohol use for this population group. This research can play an important role in informing policies by identifying those factors which influence preferences for patterns of risky alcohol use and those groups and communities who are most at risk of harm.
Resumo:
Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome-wide next-generation sequencing of DNA pools ('pool-seq') from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome-wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well-known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.
Resumo:
This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.
Resumo:
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Resumo:
These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.
Resumo:
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very exible and can be easily adapted to analyze any of the di¤erent priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction (e.g. the posterior probability that over-identifying restrictions hold) and discuss diagnostic checking using the posterior distribution of discrepancy vectors. We illustrate our methods in a returns-to-schooling application.
Resumo:
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecasting model is selected in the long-run. A key structural parameter governing outcomes measures the degree of expectations feedback in Muth's model of price determination.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.