902 resultados para fluorescent brightening agents
Resumo:
This paper presents a method for generating Pareto-optimal solutions in multi-party negotiations. In this iterative method, decision makers (DMs) formulate proposals that yield a minimum payoff to their opponents. Each proposal belongs to the efficient frontier, DMs try to adjust to a common one. In this setting, each DM is supposed to have a given bargaining power. More precisely each DM is supposed to have a subjective estimate of the power of the different parties. We study the convergence of the method, and provide examples where there is no possible agreement resulting from it.
Resumo:
A novel anthracene-tagged oligonucleotide can discriminate between a fully-matched DNA target sequence and one with a single mismatching base-pair through a remarkable difference in fluorescence emission intensity upon duplex formation.
Resumo:
This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.