957 resultados para flame-retardant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transient flame simulation tool based on unsteady Reynolds average Navier Stokes (RANS) is characterized for stationary and nonstationary flame applications with a motivation of performing computationally affordable flame stability studies. Specifically, the KIVA-3V code is utilized with incorporation of a recently proposed modified eddy dissipation concept for simulating turbulence-chemistry interaction along with a model for radiation loss. Detailed comparison of velocities, turbulent kinetic energies, temperature, and species are made with the experimental data of the turbulent, non-premixed DLR_A CH4/H-2/N-2 jet flame. The comparison shows that the model is able to predict flame structure very well. The effect of some of the modeling assumptions is assessed, and strategies to model a stationary diffusion flame are recommended. Unsteady flame simulation capabilities of the numerical model are assessed by simulating an acoustically excited, experimental, oscillatory H-2-air diffusion flame. Comparisons are made with oscillatory velocity field and OH plots, and the numerical code is observed to predict transient flame structure well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents the studies conducted on turbocharged producer gas engines designed originally for natural gas (NG) as the fuel. Producer gas, whose properties like stoichiometric ratio, calorific value, laminar flame speed, adiabatic flame temperature, and related parameters that differ from those of NG, is used as the fuel. Two engines having similar turbochargers are evaluated for performance. Detailed measurements on the mass flowrates of fuel and air, pressures and temperatures at various locations on the turbocharger were carried out. On both the engines, the pressure ratio across the compressor was measured to be 1.40 +/- 0.05 and the density ratio to be 1.35 +/- 0.05 across the turbocharger with after-cooler. Thermodynamic analysis of the data on both the engines suggests a compressor efficiency of 70 per cent. The specific energy consumption at the peak load is found to be 13.1 MJ/kWh with producer gas as the fuel. Compared with the naturally aspirated mode, the mass flow and the peak load in the turbocharged after-cooled condition increased by 35 per cent and 30 per cent, respectively. The pressure ratios obtained with the use of NG and producer gas are compared with corrected mass flow on the compressor map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleation and growth of vanadium oxide nanotubes (VOx-NT) have been followed by a combination of numerous ex situ techniques. long the hydrothermal process. Intermediate solid phases extracted at different reaction times have been characterized by powder X-ray diffraction, scanning and transmission electron microscopy, electron spin resonance, and V-K edge :X-ray absorption near-edge structure spectroscopy. The supernatant vanadate solutions extracted during the hydrothermal treatment have been studied by liquid V-51 NMR and flame. spectroscopy. For short durations of the hydrothermal synthesis, the initial V2O5-surfactant intercalate. is progressively transformed into VOx-NT whose crystallization starts to be detected after a hydrothermal treatment of 24 h. Upon heating from 24 h to 7 days, VOx-NT are obtained in larger amount and with an improved crystallinity. The detection of soluble amines and cyclic metavanadate V4O12](4-) in the supernatant solution along the hydrothermal process suggests that VOx-NT result from a dissolution precipitation mechanism. Metavanadate species V4O12](4-) could behave as molecular precursors in the polymerization reactions leading to VOx-NT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper addresses experiments and modeling studies on the use of producer gas, a bio-derived low energy content fuel in a spark-ignited engine. Producer gas, generated in situ, has thermo-physical properties different from those of fossil fuel(s). Experiments on naturally aspirated and turbo-charged engine operation and subsequent analysis of the cylinder pressure traces reveal significant differences in the heat release pattern within the cylinder compared with a typical fossil fuel. The heat release patterns for gasoline and producer gas compare well in the initial 50% but beyond this, producer gas combustion tends to be sluggish leading to an overall increase in the combustion duration. This is rather unexpected considering that producer gas with nearly 20% hydrogen has higher flame speeds than gasoline. The influence of hydrogen on the initial flame kernel development period and the combustion duration and hence on the overall heat release pattern is addressed. The significant deviations in the heat release profiles between conventional fuels and producer gas necessitates the estimation of producer gas-specific Wiebe coefficients. The experimental heat release profiles are used for estimating the Wiebe coefficients. Experimental evidence of lower fuel conversion efficiency based on the chemical and thermal analysis of the engine exhaust gas is used to arrive at the Wiebe coefficients. The efficiency factor a is found to be 2.4 while the shape factor m is estimated at 0.7 for 2% to 90% burn duration. The standard Wiebe coefficients for conventional fuels and fuel-specific coefficients for producer gas are used in a zero D model to predict the performance of a 6-cylinder gas engine under naturally aspirated and turbo-charged conditions. While simulation results with standard Wiebe coefficients result in excessive deviations from the experimental results, excellent match is observed when producer gas-specific coefficients are used. Predictions using the same coefficients on a 3-cylinder gas engine having different geometry and compression ratio(s) indicate close match with the experimental traces highlighting the versatility of the coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies on a single-cavity, compact trapped vortex combustor concept showed good flame stability for a wide range of flow conditions. However, achieving good mixing between cavity products and mainstream flow was still a major challenge. In the present study, a passive mixing enhancement strategy of using inclined struts along with a flow guide vane is presented and experimentally tested at atmospheric pressure conditions. Results show excellent mixing and consequently low values of the combustor exit pattern factor in the range of 0.1 and small flame lengths (57 times the main-duct depth). The pressure drop is small in the range of 0.35%, and NOx levels of the order of 12ppm are achieved. The flame stability is excellent, and combustion efficiency is reasonable in the range of 96%. The effectiveness of the proposed strategy is explained on the basis of in-situ OH chemiluminescence images and prior numerical simulations of the resulting complex flow field. The flow guide vane is observed to lead to a counterclockwise cavity vortex, which is conducive to the rise of cavity combustion products along the inclined struts and subsequent mixing with the mainstream flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper analyses the results of experiments on the propagation rate in a fuel bed under gasification conditions in a co-current reactor configuration. Experiments using wood chips with different values of moisture content have been conducted under gasification conditions. The influence of air mass flux on the propagation rate, peak temperature and gas quality is investigated. It is observed from the experiments that the flame front propagation rate initially increases as the air mass flux increased, reaching a peak propagation rate, and further increase in the air mass flux results in a decrease in the propagation rate. However, the bed movement increases with the increase in air mass flux. The experimental results provide an understanding on influence of the fuel properties on propagation front. The surface area per unit volume of the particles in the packed bed plays an important role in the propagation rate. It has been argued that the flaming pyrolysis contributes towards the flame propagation as opposed to the overall combustion process in a packed bed. The calorific value of the producer gas generated is nearly the same over the entire range of air mass flux for bone-dry and 10% moist wood. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study provides an extensive and detailed numerical analysis of NO chemical kinetics in low calorific value H-2/CO syngas flames utilizing predictions by five chemical kinetic mechanisms available out of which four deal with H-2/CO while the fifth mechanism (GRI 3.0) additionally accounts for hydrocarbon chemistry. Comparison of predicted axial NO profiles in premixed flat flames with measurements at 1 bar, 3.05 bar and 9.15 bar shows considerably large quantitative differences among the various mechanisms. However, at each pressure, the quantitative reaction path diagrams show similar NO formation pathways for most of the mechanisms. Interestingly, in counterflow diffusion flames, the quantitative reaction path diagrams and sensitivity analyses using the various mechanisms reveal major differences in the NO formation pathways and reaction rates of important reactions. The NNH and N2O intermediate pathways are found to be the major contributors for NO formation in all the reaction mechanisms except GRI 3.0 in syngas diffusion flames. The GRI 3.0 mechanism is observed to predict prompt NO pathway as the major contributing pathway to NO formation. This is attributed to prediction of a large concentration of CH radical by the GRI 3.0 as opposed to a relatively negligible value predicted by all other mechanisms. Also, the back-conversion of NNH into N2O at lower pressures (2-4 bar) was uniquely observed for one of the five mechanisms. The net reaction rates and peak flame temperatures are used to correlate and explain the differences observed in the peak NO] at different pressures. This study identifies key reactions needing assessment and also highlights the need for experimental data in syngas diffusion flames in order to assess and optimize H-2/CO and nitrogen chemistry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-induced internal boiling in burning functional droplets has been observed to induce severe bulk shape oscillations in droplets with characteristic bubble ejection events that corrugate the droplet surface. Such bubble-droplet interactions are characterized by a distinct regime of a single bubble growing inside the droplet where evaporative Darrieus-Landau instability occurs at the bubble-droplet interface. In this regime the bubble-droplet system behaves as a self-excited coupled oscillator. In this study, we report the external flame-acoustic interaction with bubbles inside the droplet resulting in controlled droplet deformation. In particular, by exciting the droplet flame in a critical, responsive frequency range (80 Hz <= f(p) <= 120 Hz) the droplet deformation cycle could be altered through suppression of these self-excited instabilities and intensity/frequency of bubble ejection events. This selective acoustic tuning also enabled the control of bubble dynamics, bulk droplet-shape distortion and the final precipitate morphology even in burning nanoparticle laden droplets. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms-(1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are colocated. Regions in the space of parameters characterizing the base flow velocity profile, i.e., shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on understanding prior experimental studies of combustion instability in backward facing step combustors and hydrodynamic instability in other flows such as heated jets and bluff body stabilized flames is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a fully coupled time domain Reduced Order Modelling (ROM) approach to model unsteady combustion dynamics in a backward facing step combustor The acoustic field equations are projected onto the canonical acoustic eigenmodes of the systems to obtain a coupled system of modal evolution equations. The heat release response of the flame is modelled using the G-equation approach. Vortical velocity fluctuations that arise due to shear layer rollup downstream of the step are modelled using a simplified 1D-advection equation whose phase speed is determined from a linear, local, temporal stability analysis of the shear layer just downstream of the step. The hydrodynamic stability analysis reveals a abrupt change in the value of disturbance phase speed from unity for Re < Re-crit to 0.5 for Re > Re-crit, where Remit for the present geometry was found to be approximate to 10425. The results for self-excited flame response show highly wrinkled flame shapes that are qualitatively similar to those seen in prior experiments of acoustically forced flames. The effect of constructive and destructive interference between the two contributions to flame surface wrinkling results in high amplitude wrinkles for the case when K-c -> 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eu2+ ion doped into a suitable host results in an efficient luminophore with engineering relevance; however stabilizing this ion in a host is known to be a challenge. Here we report a novel approach for the synthesis of efficient CaAl2O4 phosphor containing Eu2+ luminophore and Cr3+ activator. CaAl2O4:Eu2+, Cr3+ is prepared by a solution combustion (SCS) method using (i) urea, (ii) oxalyl dihydrazide (ODH) and (iii) fuel-blend (in which overall fuel to oxidizer ratio (F/O) = 1). A Multi-channel thermocouple setup is used to measure the flame temperatures to study the nature of combustion of various fuel mixtures. The variation of adiabatic flame temperature is calculated theoretically for different urea/ODH mixture ratios according to thermodynamic concept and correlated with the observed flame temperatures. Blue emission of the CaAl2O4:Eu2+ phosphor is enhanced similar to 20 times using the fuel-blend approach. Using the observed reaction kinetics, and the known chemistry of smoldering type combustion, a mechanism is proposed for the observed stabilization of Eu2+ ion in the fuel-blend case. This also explains the observed improvement in blue light emission. We show that the right choice of the fuel ratio is essential for enhancing photoluminescence (PL) emission. The PL intensity is highest for ODH lean and urea rich combination (i.e. when the ratio of ODH:urea is 1:5); measured color purity is comparable to commercial blue phosphor, BAM:Eu2+. (C) 2015 Elsevier B.V. All rights reserved.