958 resultados para finite element


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Newton–Raphson solution scheme with a stress point algorithm is presented for the implementation of an elastic–viscoplastic soilmodel in a finite element program. Viscoplastic strain rates are calculated using the stress and volumetric states of the soil. Sub-incrementsof time are defined for each iterative calculation of elastic–viscoplastic stress changes so that their sum adds up to the time incrementfor the load step. This carefully defined ‘iterative time’ ensures that the correct amount of viscoplastic straining is accumulated overthe applied load step. The algorithms and assumptions required to implement the solution scheme are provided. Verification of the solutionscheme is achieved by using it to analyze typical boundary value problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new elastic–viscoplastic (EVP) soil model has been used to simulate the measured deformation response of a soft estuarine soil loaded by a stage-constructed embankment. The simulation incorporates prefabricated vertical drains installed in the foundation soils and reinforcement installed at the base of the embankment. The numerical simulations closely matched the temporal changes in surface settlement beneath the centerline and shoulder of the embankment. More importantly, the elastic–viscoplastic model simulated the pattern and magnitudes of the lateral deformations beneath the toe of the embankment — a notoriously difficult aspect of modelling the deformation response of soft soils. Simulation of the excess pore-water pressure proved more difficult because of the heterogeneous nature of the estuarine deposit. Excess pore-water pressures were, however, mapped reasonably well at three of the six monitoring locations. The simulations were achieved using a small set of material constants that can easily be obtained from standard laboratory tests. This study validates the use of the EVP model for problems involving soft soil deposits beneath loading from a geotechnical structure.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in surgical procedure, prosthesis design, and biomaterials performance have considerably increased the longevity of total joint replacements. Preoperative planning is another step in joint replacement that may have the potential to improve clinical outcome for the individual patient, but has remained relatively consistent for a longtime. One means of advancing this aspect of joint replacement surgery may be to include predictive computer simulation into the planning process. In this article, the potential of patient-specific finite element analysis in preoperative assessment is investigated. Seventeen patient-specific finite element models of cemented Charnley reconstructions were created, of which six were early (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress analysis of the cement fixation of orthopaedic implants to bone is frequently? carried out using finite element analysis. However, the stress distribution in the cement laver is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stein tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However; if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stein generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stein. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.