996 resultados para epsilon-Neodymium
Resumo:
The neodymium (Nd) isotope composition of ancient seawater is a potentially useful tracer of changes in continental inputs and ocean circulation on timescales of a few ka. Here we present the first Nd isotope record for seawater using sedimentary foraminifera cleaned using standard oxidative-reductive techniques. The data, along with Mn/Ca ratios, suggest that cleaned foraminifera provide a reliable record of Nd in seawater and hold out the prospect of using Nd in foraminifera to examine changes in seawater that accompany glacial-interglacial climatic cycles. The principal potential problem to be overcome with the use of forams as records of trace elements in ancient seawater is their diagenetic Fe-Mn coatings. These contain large amounts of Nd and other trace elements but can be cleaned off using highly reducing reagents. Mn(Ca ratios for the majority of the cleaned sedimentary foraminifera analysed here lie within the range (10-100 µmol/mol) that has yielded success in studies of transition elements in forams. Mass-balance modelling suggests that for residual Mn/Ca ratios <100 µmol/mol, Nd added to the foram in the coating will never shift the measured Nd isotope composition significantly away from the seawater value acquired by the foram test in the water column. Additionally, Nd concentrations measured in cleaned sedimentary foraminifera are comparable with those for a modern sample that has never encountered diagenetic fluids. Finally, core-top planktonic foraminifera for two sites have Nd isotope compositions that are identical to local surface seawater. The data we present here for Labrador Sea forams over the past 2.5 m.y. are interpreted in terms of changes in the seawater isotopic composition. The data show a pronounced shift from epsilon-Nd values of ~-12 to ~-19 in the period 2.5-1.5 Ma. This change is interpreted to result from the initiation of Northern Hemisphere glaciation and the increased derivation of Labrador Sea Nd via ice-rafting from Archaean terranes in central Canada. In combination with stable isotope and foraminiferal relative species abundance data, the new Nd data are consistent with the surface hydrography of the Labrador Sea being dominated by a fluctuating balance between cold, polar waters containing unradiogenic Nd and warm, subtropical waters containing more radiogenic Nd. The major change in Labrador Sea Nd that is observed in the past 2.5 Ma can, on its own, account for the change in the Nd isotope composition of North Atlantic Deep Water over the same time period.
Trace element abundance, and Sr and Nd isotope ratios of dust samples in the Pacific Ocean (Table 2)
Resumo:
Eolian dust preserved in deep-sea sediment cores provides a valuable indicator of past atmospheric circulation and continental paleoclimate. In order to identify the provenance of eolian dust, Nd and Sr isotopic compositions and Rb, Sr and rare earth element (REE) concentrations have been determined for the silicate fractions of deep-sea sediments from the north and central Pacific Ocean. Different regions of the Pacific Ocean are characterized by distinct air-borne inputs, producing a large range in epsolin-Nd (-10 to +1), 87Sr/86Sr (0.705-0.721), La/Yb (5-15), EuN/EuN* (0.6-1.0) and Sr/Nd (4-33). The average Nd isotopic composition of Pacific deep-sea sediments (epsilon-Nd = -6), is more radiogenic than the average from the Atlantic (epsilon-Nd = -8). In contrast, the average147Sm/144Nd ratio for Pacific sediments (0.114) is identical to that of Atlantic sediments and to that of global average riverine suspended material. The values of epsilon-Nd and147Sm/144Nd are positively correlated for the Pacific samples but negatively correlated for Atlantic samples, reflecting a fundamental difference between the dominant components in the end members with radiogenic Nd (island-arc components in the Pacific and LREE-enriched intraplate ocean island components in the Atlantic). Samples from the north central Pacific have distinctive unradiogenic epsilon-Nd values of -10, 87Sr/86Sr > 0.715, high La/Yb (> 12), and low EuN/EuN* (0.6) and Sr/Nd (3-6). These data are virtually identical to the values for loess from Asia and endorse the use of these sediments as indicators of Asian paleoclimate and paleowind directions. Island-arc contributions appear to dominate in the northwest Pacific, resulting in higher epsilon Nd (-1 to +1) and lower 87Sr/86Sr (~ 0.705) and La/Yb (~ 5). Sediments from the eastern Pacific tend to have intermediate Sr and Nd isotopic compositions but regionally variable Sr/Nd and REE patterns; they appear to be derived from the west margin of the North and South American continents, rather than from Asia. Our results confirm that dust provenance can be constrained by isotopic and geochemical analyses, which will facilitate reconstructions of past atmospheric circulation and continental paleoclimate.
Resumo:
The neodymium isotopic composition of the silicate fraction of Holocene pelagic sediments from the North Pacific define two provinces: a central North Pacific province characterized by unradiogenic and remarkably homogeneous end (-10.2 +/- 0.5) and a narrow circum-Pacific marginal province characterized by more radiogenic and variable end (-4.2 +/- 3.8). The silicate fraction in the central North Pacific is exclusively eolian; based on prevailing wind patterns, meteorological data, and neodymium isotopic data, the only significant sediment source is Chinese loess. Leaching experiments on Chinese loess confirm that leachable Nd is isotopically indistinguishable from bulk and residual silicate Nd. Silicates in the circum-North Pacific marginal province comprise eolian loess, volcanic ash, and hemipelagic sediments derived from volcanic arcs. A compilation of Pacific seawater and Mn nodule epsilon-Nd data shows no clear spatial variation except for a general decrease from surface to deep waters from -3 to -4 and slightly lower epsilon-Nd in bottom waters along the western North Pacific due to the incursion of Antarctic Bottom Water. The relative homogeneity of bottom water epsilon-Nd, which contrasts sharply with the distinctive variation in sediment epsilon-Nd, plus the large difference between the average end of bottom waters and the central North Pacific eolian silicates (-4 vs. -10), suggests that any contribution of REE to seawater from eolian materials is insignificant. Furthermore, leaching of REE from eolian particles as they sink though the water column must be insignificant because Nd in shallow waters is more radiogenic than Nd in deeper waters. That there is no contrast in the Nd isotopic composition of bottom waters that overlie the central and marginal sediment provinces suggests that the ash and hemipelagic sediments derived from Pacific rim volcanic arcs also contribute minimal REE to seawater. The elimination of eolian, ash, and hemipelagic sediments leaves only near-shore riverine particulates as a possibly significant particulate source of REE to seawater.