943 resultados para epoxy resin-based root canal sealer
Resumo:
To analyse the gutta-percha filled area of C-shaped molar teeth root filled with the modified MicroSeal technique with reference to the radiographic features and the C-shaped canal configuration. Twenty-three mandibular second molar teeth with C-shaped roots were classified according to their radiographic features as: type I - merging, type II - symmetrical and type III - asymmetrical. The canals were root filled using a modified technique of the MicroSeal system. Horizontal sections at intervals of 600 mu m were made 1 mm from the apex to the subpulpal floor level. The percentage of gutta-percha area from the apical, middle and coronal levels of the radiographic types was analysed using the Kruskal-Wallis test. Complementary analysis of the C-shaped canal configurations (C1, C2 and C3) determined from cross-sections from the apical third was performed in a similar way. No significant differences were found between the radiographic types in terms of the percentage of gutta-percha area at any level (P > 0.05): apical third, type I: 77.04%, II: 70.48% and III: 77.13%, middle third, type I: 95.72%, II: 93.17%, III: 91.13% and coronal level, type I: 98.30%, II: 98.25%, III: 97.14%. Overall, the percentage of the filling material was lower in the apical third (P < 0.05). No significant differences were found between the C-shaped canal configurations apically; C1: 72.64%, C2: 79.62%, C3: 73.51% (P > 0.05). The percentage of area filled with gutta-percha was similar in the three radiographic types and canal configuration categories of C-shaped molars. These results show the difficulty of achieving predictable filling of the root canal system when this anatomical variation exists. In general, the apical third was less completely filled.
Resumo:
This study compared the effect of two drills and five cleaning regimens on post space debridement. One hundred extracted premolars were instrumented and obturated with warm vertical compaction of gutta percha. The teeth were divided into two groups according to the drill used to remove gutta percha/sealer and for post space preparation: a Largo drill (Largo; Dentsply, St Quentin en Yvelines, France) or a MTwo-PF drill (Sweden&Martina, Due Carrare, Padova, Italy). The following cleaning regimens were used: EDTA, ultrasonics, ultrasonics + EDTA, phosphoric acid, and distilled water. Scanning electron microscopic images of the post spaces were taken, and the presence of debris and of open dentin tubules were evaluated. The ultrasonics + EDTA, phosphoric acid, and EDTA groups were comparable in open tubules scores for both drills and in debris scores after the use of MTwo-PF (p > 0.05). The ultrasonics and control groups performed significantly worse (p < 0.05). The MTwo-PF drill resulted as effective as the Largo drill in obtaining a good post space cleaning, especially when followed by ultrasonics + EDTA irrigant regimen.
Resumo:
P>Objective To evaluate the influence of apical size on cleaning of the apical third of curved canals prepared with rotary instruments. Methodology Forty-four mesiobuccal canals of maxillary molars teeth were instrumented to different apical sizes (30, 0.02; 35, 0.02; 40, 0.02; 45, 0.02) using a crown-down technique. After canal preparation, the apical thirds of the roots were submitted to histological processing and examination. The specimens were analysed at 40x magnification and the images were submitted to morphometric analysis with an integration grid to evaluate the percentage of debris and uninstrumented root canal walls. The action of the instruments on the root canal walls was assessed based on the surface regularity, abrupt change on the continuity of root canal walls, and partial or total pre-dentine removal. The results were statistically compared using one-way anova with post hoc Tukey test. Pearson`s correlation was performed to identify potential correlations between values. Results The percentage of uninstrumented root canal dentine was higher when apical enlargement was performed with instruments 30, 0.02 taper (55.64 +/- 4.62%) and 35, 0.02 taper (49.03 +/- 5.70%) than with instruments 40, 0.02 taper (38.08 +/- 10.44%) and 45, 0.02 taper (32.65 +/- 8.51%) (P < 0.05). More debris were observed when apical enlargement was performed with instruments 30, 0.02 taper (34.62 +/- 9.49%) and 35, 0.02 taper (25.33 +/- 7.37%) (P < 0.05). There was a significant correlation between the amount of remaining debris and the perimeter of uninstrumented root canal dentine (r = 0.9130, P < 0.001). Conclusion No apical enlargement size allowed the root canal walls to be prepared completely. Apical third cleanliness could be predicted by instrument diameter.
Resumo:
Objectives: To evaluate the bonding interface in experimentally weakened roots reinforced with adhesive restorative materials and quartz fibre posts, varying the light-exposure time of the composite resin used for root reinforcement. Methods: Twelve extracted human maxillary incisors teeth were used. The crowns were removed and the roots were endodontically treated. After post space preparation, the roots were assigned to four groups. The thickness of the root dentine was reduced and adhesively restored with composite resin light-activated through a translucent fibre post for either 40 s (group 1), 80 s (group 2) or 120 s (group 3). In the case of control (group 4), the roots were not weakened. One day after post cementation, the specimens were sectioned transversally in three slices and processed for scanning electron microscopic analysis to observe bonding interface formation, quality of the hybrid layer and density of resin tags using a four-step scale method. Results: Formation of a hybrid layer and resin tags were evident in all groups. There was no statistically (p > 0.05) significant difference between the regions analysed in each group (Friedman test) and between groups in each section depth (Kruskal-Wallis test). Furthermore, comparison of the flared/reinforced groups showed that the different time;; used for composite resin cure did not affect the results significantly (Kruskal-Wallis test, p = 0.2139). Conclusions: Different light-exposure times used for composite resin polymerisation during root canal reinforcement did not affect significantly the formation and quality of the dentine/adhesive/composite resin bonding interface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Horizontal root fractures are uncommon, mainly occurring on the cervical and middle third of the root of permanent upper incisors. The diagnosis is essentially radiographic and requires different healing patterns, depending on some pre- and postinjury factors. The aim of this article was to report the clinical management and different healing types in three cases of horizontal root fractures on permanent dentition. In case 1, the pulp tissue was vital and no treatment was necessary. In case 2, a root canal treatment of the cervical fragment was necessary and in case 3, pulpal necrosis was verified and an apical surgery was performed.
Resumo:
Four dispersion methods were used for the preparation of vapour grown carbon nanofibre (VGCNF)/epoxy composites. It is shown that each method induces certain levels of VGCNF dispersion and distribution within the matrix, and that these have a strong influence on the composite electrical properties. A homogenous VGCNF dispersion does not necessarily imply higher electrical conductivity. In fact, it is concluded that the presence of well distributed clusters, rather than a fine dispersion, is more important for achieving larger conductivities for a given VGCNF concentration. It is also found that the conductivity can be described by a weak disorder regime.
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
The construction of a tubular hydrogen ion-selective potentiometric electrode without inner reference solution, based on the tridodecylamine (TDDA) ionophore, and its evaluation in a flow system are described. TDDA was dissolved in 2-nitrophenyl octyl ether, dispersed in a PVC membrane and applied directly to a conducting support which consisted of an epoxy resin and graphite mixture. The electrode was designed with a tubular geometry to effort facilities to be coupled as part of a flow injection network. The main working characteristics such as response time, linear pH range, selectivity and life time were evaluated and compared with those obtained which a conventionally shaped electrode based on the same sensor. The electrode showed a slope of 51-52 mV dec-1 within a linear pH range from 4.0 up to 12.0.
Resumo:
The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)n3-n anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)4- species. Application of this electrode for the aluminium(III) determination in stomach anti-acid samples is reported.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
This thesis aims to develop new toughened systems for epoxy resin via physical and chemical modifications. Initially the synthesis of DGEBA was carried out and the properties compared with that of the commercial sample. Subsequently the modifier resins to be employed were synthesized. The synthesized resin were characterized by spectroscopic method (FTIR and H NMR), epoxide equivalent and gel permeation chromatography. Chemical modification involves the incorporation of thermoset resins such a phenolics, epoxy novolacs, cardanol epoxides and unsaturated polyester into the epoxy resin by reactive belnding. The mechanical and thermal properties of the blends were studied. In the physical modification route, elastomers, maleated elastomers and functional elastomers were dispersed as micro-sized rubber phase into the continuous epoxy phase by a solution blending technique as against the conventional mechanical blending technique. The effect of matrix toughening on the properties of glass reinforced composites and the effect of fillers on the properties of commercial epoxy resin were also investigated. The blends were characterized by thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy and mechanical property measurements. Among the thermoset blends, substantial toughening was observed in the case of epoxy phenolic novolacs especially epoxy para cresol novolac (ECN). In the case of elastomer blending , the toughest blends were obtained in the case of maleic anhydride grafted NBR. Among functional elastomers the best results were obtained with CTBN. Studies on filled and glass reinforced composites employing modified epoxy as matrix revealed an overall improvement in mechanical properties
Resumo:
The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.
Resumo:
In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance