869 resultados para epoc® blood analysis system
Resumo:
ROTEM® is considered a helpful point-of-care device to monitor blood coagulation in emergency situations. Centrally performed analysis is desirable but rapid transport of blood samples is an important prerequisite. The effect of acceleration forces on sample transport through a pneumatic tube system on ROTEM® should be tested at each institution to exclude a pre-analytical influence. The aims of the present work were: (i) to investigate the effect of pneumatic tube transport on ROTEM® parameters; (ii) to compare blood sample transport via pneumatic tube vs. manual transportation; and (iii) to determine the effect of acceleration forces on ROTEM® parameters.
Resumo:
Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.
Resumo:
Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^
Resumo:
The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^
Resumo:
ntroduction: The ProAct study has shown that a pump switch to the Accu-Chek® Combo system (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) in type 1 diabetes patients results in stable glycemic control with significant improvements in glycated hemoglobin (HbA1c) in patients with unsatisfactory baseline HbA1c and shorter pump usage time. Patients and Methods: In this post hoc analysis of the ProAct database, we investigated the glycemic control and glycemic variability at baseline by determination of several established parameters and scores (HbA1c, hypoglycemia frequency, J-score, Hypoglycemia and Hyperglycemia Indexes, and Index of Glycemic Control) in participants with different daily bolus and blood glucose measurement frequencies (less than four day, four or five per day, and more than five per day, in both cases). The data were derived from up to 299 patients (172 females, 127 males; age [mean±SD], 39.4±15.2 years; pump treatment duration, 7.0±5.2 years). Results: Participants with frequent glucose readings had better glycemic control than those with few readings (more than five readings per day vs. less than four readings per day: HbA1c, 7.2±1.1% vs. 8.0±0.9%; mean daily blood glucose, 151±22 mg/dL vs. 176±30 mg/dL; percentage of readings per month >300 mg/dL, 10±4% vs. 14±5%; percentage of readings in target range [80-180 mg/dL], 59% vs. 48% [P<0.05 in all cases]) and had a lower glycemic variability (J-score, 49±13 vs. 71±25 [P<0.05]; Hyperglycemia Index, 0.9±0.5 vs. 1.9±1.2 [P<0.05]; Index of Glycemic Control, 1.9±0.8 vs. 3.1±1.6 [P<0.05]; Hypoglycemia Index, 0.9±0.8 vs. 1.2±1.3 [not significant]). Frequent self-monitoring of blood glucose was associated with a higher number of bolus applications (6.1±2.2 boluses/day vs. 4.5±2.0 boluses/day [P<0.05]). Therefore, a similar but less pronounced effect on glycemic variability in favor of more daily bolus applications was observed (more than five vs. less than four bolues per day: J-score, 57±17 vs. 63±25 [not significant]; Hypoglycemia Index, 1.0±1.0 vs. 1.5±1.4 [P<0.05]; Hyperglycemia Index, 1.3±0.6 vs. 1.6±1.1 [not significant]; Index of Glycemic Control, 2.3±1.1 vs. 3.1±1.7 [P<0.05]). Conclusions: Pump users who perform frequent daily glucose readings have a better glycemic control with lower glycemic variability.
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.
Resumo:
A hierarchy of enzyme-catalyzed positive feedback loops is examined by mathematical and numerical analysis. Four systems are described, from the simplest, in which an enzyme catalyzes its own formation from an inactive precursor, to the most complex, in which two sequential feedback loops act in a cascade. In the latter we also examine the function of a long-range feedback, in which the final enzyme produced in the second loop activates the initial step in the first loop. When the enzymes generated are subject to inhibition or inactivation, all four systems exhibit threshold properties akin to excitable systems like neuron firing. For those that are amenable to mathematical analysis, expressions are derived that relate the excitation threshold to the kinetics of enzyme generation and inhibition and the initial conditions. For the most complex system, it was expedient to employ numerical simulation to demonstrate threshold behavior, and in this case long-range feedback was seen to have two distinct effects. At sufficiently high catalytic rates, this feedback is capable of exciting an otherwise subthreshold system. At lower catalytic rates, where the long-range feedback does not significantly affect the threshold, it nonetheless has a major effect in potentiating the response above the threshold. In particular, oscillatory behavior observed in simulations of sequential feedback loops is abolished when a long-range feedback is present.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Programs, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Programs, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Alcohol Safety Action Project--Puerto Rico, San Juan
Resumo:
1. The natriuretic peptide precursor A (Nppa) and B (Nppb) genes are candidate genes for hypertension and cardiac hypertrophy in the spontaneously hypertensive rat (SHR). The purpose of the present study was to determine the role of the Nppa and Nppb genes in the development of hypertension in the SHR. 2. A cohort (n = 162) of F2 segregating intercross animals was established between strains of hypertensive SHR and normotensive Wistar-Kyoto rats. Blood pressure and heart weight were measured in each rat at 12-16 weeks of age. Rats were genotyped using 11 informative microsatellite markers, distributed in the vicinity of the Nppa marker on rat chromosome 5 including an Nppb marker. The phenotype values were compared with genotype using the computer package MAP-MAKER 3.0 (Whitehead Institute, Boston, MA, USA) to determine whether there was a link between the genetic variants of the natriuretic peptide family and blood pressure or cardiac hypertrophy. 3. A strong correlation was observed between the Nppa marker and blood pressure. A quantitative trait locus (QTL) for blood pressure on chromosome 5 was identified between the Nppa locus and the D5Mgh15 marker, less than 2 cM from the Nppa locus. The linkage score for the blood pressure QTL on chromosome 5 was 3.8 and the QTL accounted for 43% of the total variance of systolic blood pressure, 54% of diastolic blood pressure and 59% of mean blood pressure. No association was found between the Nppb gene and blood pressure. This is the first report of linkage between the Nppa marker and blood pressure in the rat. There was no correlation between the Nppa or Nppb genes or other markers in this region and either heart weight or left ventricular weight in F2 rats. 4. These findings suggest the existence of a blood pressure-dependent Nppa marker variant or a gene close to Nppa predisposing to spontaneous hypertension in the rat. It provides a strong foundation for further detailed genetic studies in congenic strains, which may help to narrow down the location of this gene and lead to positional cloning.