904 resultados para encoding of measurement streams


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production effect is the benefit in memory found for produced (i.e., read aloud) words relative to words read silently. It is proposed that the production effect occurs as a result of the enhanced distinctiveness associated with the produced items. The current research investigated whether attentional resources are required to encode and/or retrieve the distinctive information associated with the produced words. The literature suggests that the encoding of this distinctive information occurs automatically, but at test, purposeful attention is required to retrieve this distinctive information. To test this, participants read words aloud and silently, under either full or divided attention. Participants then completed either a recognition (Experiment 1) or free recall (Experiment 2) memory test under either full or divided attention. The findings show that when attention is divided at encoding, the benefit for aloud words remains for both recognition and free recall. When attention is divided at test, however, the benefit for aloud words remains for recognition but is absent for free recall. Overall, these results suggest that the distinctive information associated with produced words is encoded automatically, but it may not be accessible at test under attentionally demanding conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents a study and experimental research on asymmetric coding of stereoscopic video. A review on 3D technologies, video formats and coding is rst presented and then particular emphasis is given to asymmetric coding of 3D content and performance evaluation methods, based on subjective measures, of methods using asymmetric coding. The research objective was de ned to be an extension of the current concept of asymmetric coding for stereo video. To achieve this objective the rst step consists in de ning regions in the spatial dimension of auxiliary view with di erent perceptual relevance within the stereo pair, which are identi ed by a binary mask. Then these regions are encoded with better quality (lower quantisation) for the most relevant ones and worse quality (higher quantisation) for the those with lower perceptual relevance. The actual estimation of the relevance of a given region is based on a measure of disparity according to the absolute di erence between views. To allow encoding of a stereo sequence using this method, a reference H.264/MVC encoder (JM) has been modi ed to allow additional con guration parameters and inputs. The nal encoder is still standard compliant. In order to show the viability of the method subjective assessment tests were performed over a wide range of objective qualities of the auxiliary view. The results of these tests allow us to prove 3 main goals. First, it is shown that the proposed method can be more e cient than traditional asymmetric coding when encoding stereo video at higher qualities/rates. The method can also be used to extend the threshold at which uniform asymmetric coding methods start to have an impact on the subjective quality perceived by the observers. Finally the issue of eye dominance is addressed. Results from stereo still images displayed over a short period of time showed it has little or no impact on the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using survey data from 358 online customers, the study finds that the e-service quality construct conforms to the structure of a third-order factor model that links online service quality perceptions to distinct and actionable dimensions, including (1) website design, (2) fulfilment, (3) customer service, and (4) security/privacy. Each dimension is found to consist of several attributes that define the basis of e-service quality perceptions. A comprehensive specification of the construct, which includes attributes not covered in existing scales, is developed. The study contrasts a formative model consisting of 4 dimensions and 16 attributes against a reflective conceptualization. The results of this comparison indicate that studies using an incorrectly specified model overestimate the importance of certain e-service quality attributes. Global fit criteria are also found to support the detection of measurement misspecification. Meta-analytic data from 31,264 online customers are used to show that the developed measurement predicts customer behavior better than widely used scales, such as WebQual and E-S-Qual. The results show that the new measurement enables managers to assess e-service quality more accurately and predict customer behavior more reliably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimensional and form inspections are key to the manufacturing and assembly of products. Product verification can involve a number of different measuring instruments operated using their dedicated software. Typically, each of these instruments with their associated software is more suitable for the verification of a pre-specified quality characteristic of the product than others. The number of different systems and software applications to perform a complete measurement of products and assemblies within a manufacturing organisation is therefore expected to be large. This number becomes even larger as advances in measurement technologies are made. The idea of a universal software application for any instrument still appears to be only a theoretical possibility. A need for information integration is apparent. In this paper, a design of an information system to consistently manage (store, search, retrieve, search, secure) measurement results from various instruments and software applications is introduced. Two of the main ideas underlying the proposed system include abstracting structures and formats of measurement files from the data so that complexity and compatibility between different approaches to measurement data modelling is avoided. Secondly, the information within a file is enriched with meta-information to facilitate its consistent storage and retrieval. To demonstrate the designed information system, a web application is implemented. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of the measurement activity into the production process is an essential rule in digital enterprise technology, especially for large volume product manufacturing, such as aerospace, shipbuilding, power generation and automotive industries. Measurement resource planning is a structured method of selecting and deploying necessary measurement resources to implement quality aims of product development. In this research, a new mapping approach for measurement resource planning is proposed. Firstly, quality aims are identified in the form of a number of specifications and engineering requirements of one quality characteristics (QCs) at a specific stage of product life cycle, and also measurement systems are classified according to the attribute of QCs. Secondly, a matrix mapping approach for measurement resource planning is outlined together with an optimization algorithm for combination between quality aims and measurement systems. Finally, the proposed methodology has been studied in shipbuilding to solve the problem of measurement resource planning, by which the measurement resources are deployed to satisfy all the quality aims. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital-temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time-windows were limited to attended conditions at occipito-temporal sites (N1), a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found only from objects repeated in the same intact configuration—both previously attended and unattended probe objects. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was threefold, firstly, to compare current player tracking technology in a single game of soccer. Secondly, to investigate the running requirements of elite women’s soccer, in particular the use and application of athlete tracking devices. Finally, how can game style be quantified and defined. Study One compared four different match analysis systems commonly used in both research and applied settings: video-based time-motion analysis, a semi-automated multiple camera based system, and two commercially available Global Positioning System (GPS) based player tracking systems at 1 Hertz (Hz) and 5 Hz respectively. A comparison was made between each of the systems when recording the same game. Total distance covered during the match for the four systems ranged from 10 830 ± 770 m (semi-automated multiple camera based system) to 9 510 ± 740m (video-based time-motion analysis). At running speeds categorised as high-intensity running (>15 km⋅h-1), the semi-automated multiple camera based system reported the highest distance of 2 650 ± 530 m with video-based time-motion analysis reporting the least amount of distance covered with 1 610 ± 370 m. At speeds considered to be sprinting (>20 km⋅h-1), the video-based time-motion analysis reported the highest value (420 ± 170 m) and 1 Hz GPS units the lowest value (230 ± 160 m). These results demonstrate there are differences in the determination of the absolute distances, and that comparison of results between match analysis systems should be made with caution. Currently, there is no criterion measure for these match analysis methods and as such it was not possible to determine if one system was more accurate than another. Study Two provided an opportunity to apply player-tracking technology (GPS) to measure activity profiles and determine the physical demands of Australian international level women soccer players. In four international women’s soccer games, data was collected on a total of 15 Australian women soccer players using a 5 Hz GPS based athlete tracking device. Results indicated that Australian women soccer players covered 9 140 ± 1 030 m during 90 min of play. The total distance covered by Australian women was less than the 10 300 m reportedly covered by female soccer players in the Danish First Division. However, there was no apparent difference in the estimated "#$%&', as measured by multi-stage shuttle tests, between these studies. This study suggests that contextual information, including the “game style” of both the team and opposition may influence physical performance in games. Study Three examined the effect the level of the opposition had on the physical output of Australian women soccer players. In total, 58 game files from 5 Hz athlete-tracking devices from 13 international matches were collected. These files were analysed to examine relationships between physical demands, represented by total distance covered, high intensity running (HIR) and distances covered sprinting, and the level of the opposition, as represented by the Fédération Internationale de Football Association (FIFA) ranking at the time of the match. Higher-ranking opponents elicited less high-speed running and greater low-speed activity compared to playing teams of similar or lower ranking. The results are important to coaches and practitioners in the preparation of players for international competition, and showed that the differing physical demands required were dependent on the level of the opponents. The results also highlighted the need for continued research in the area of integrating contextual information in team sports and demonstrated that soccer can be described as having dynamic and interactive systems. The influence of playing strategy, tactics and subsequently the overall game style was highlighted as playing a significant part in the physical demands of the players. Study Four explored the concept of game style in field sports such as soccer. The aim of this study was to provide an applied framework with suggested metrics for use by coaches, media, practitioners and sports scientists. Based on the findings of Studies 1- 3 and a systematic review of the relevant literature, a theoretical framework was developed to better understand how a team’s game style could be quantified. Soccer games can be broken into key moments of play, and for each of these moments we categorised metrics that provide insight to success or otherwise, to help quantify and measure different methods of playing styles. This study highlights that to date, there had been no clear definition of game style in team sports and as such a novel definition of game style is proposed that can be used by coaches, sport scientists, performance analysts, media and general public. Studies 1-3 outline four common methods of measuring the physical demands in soccer: video based time motion analysis, GPS at 1 Hz and at 5 Hz and semiautomated multiple camera based systems. As there are no semi-automated multiple camera based systems available in Australia, primarily due to cost and logistical reasons, GPS is widely accepted for use in team sports in tracking player movements in training and competition environments. This research identified that, although there are some limitations, GPS player-tracking technology may be a valuable tool in assessing running demands in soccer players and subsequently contribute to our understanding of game style. The results of the research undertaken also reinforce the differences between methods used to analyse player movement patterns in field sports such as soccer and demonstrate that the results from different systems such as GPS based athlete tracking devices and semi-automated multiple camera based systems cannot be used interchangeably. Indeed, the magnitude of measurement differences between methods suggests that significant measurement error is evident. This was apparent even when the same technologies are used which measure at different sampling rates, such as GPS systems using either 1 Hz or 5 Hz frequencies of measurement. It was also recognised that other factors influence how team sport athletes behave within an interactive system. These factors included the strength of the opposition and their style of play. In turn, these can impact the physical demands of players that change from game to game, and even within games depending on these contextual features. Finally, the concept of what is game style and how it might be measured was examined. Game style was defined as "the characteristic playing pattern demonstrated by a team during games. It will be regularly repeated in specific situational contexts such that measurement of variables reflecting game style will be relatively stable. Variables of importance are player and ball movements, interaction of players, and will generally involve elements of speed, time and space (location)".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better address stream impairments due to excess nitrogen and phosphorus and to accomplish the goals of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is requiring states to develop numeric nutrient criteria. An assessment of nutrient concentrations in streams on the Delmarva Peninsula showed that nutrient levels are mostly higher than numeric criteria derived by EPA for the Eastern Coastal Plain, indicating widespread water quality degradation. Here, various approaches were used to derive numeric nutrient criteria from a set of 52 streams sampled across Delmarva. Results of the percentile and y-intercept methods were similar to those obtained elsewhere. Downstream protection values show that if numeric nutrient criteria were implemented for Delmarva streams they would be protective of the Choptank River Estuary, meeting the goals of the Chesapeake Bay Total Maximum Daily Load (TMDL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The second generation of large scale interferometric gravitational wave (GW) detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter (SSM) interferometer, which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify SSM for further research towards an implementation in a future generation large scale GW detector, such as the planned Einstein telescope observatory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The off-cycle refrigerant mass migration has a direct influence on the on-cycle performance since compressor energy is necessary to redistribute the refrigerant mass. No studies, as of today, are available in the open literature which experimentally measured the lubricant migration within a refrigeration system during cycling or stop/start transients. Therefore, experimental procedures measuring the refrigerant and lubricant migration through the major components of a refrigeration system during stop/start transients were developed and implemented. Results identifying the underlying physics are presented. The refrigerant and lubricant migration of an R134a automotive A/C system-utilizing a fixed orifice tube, minichannel condenser, plate and fin evaporator, U-tube type accumulator and fixed displacement compressor-was measured across five sections divided by ball valves. Using the Quick-Closing Valve Technique (QCVT) combined with the Remove and Weigh Technique (RWT) using liquid nitrogen as the condensing agent resulted in a measurement uncertainty of 0.4 percent regarding the total refrigerant mass in the system. The determination of the lubricant mass distribution was achieved by employing three different techniques-Remove and Weigh, Mix and Sample, and Flushing. To employ the Mix and Sample Technique a device-called the Mix and Sample Device-was built. A method to separate the refrigerant and lubricant was developed with an accuracy-after separation-of 0.04 grams of refrigerant left in the lubricant. When applying the three techniques, the total amount of lubricant mass in the system was determined to within two percent. The combination of measurement results-infrared photography and high speed and real time videography-provide unprecedented insight into the mechanisms of refrigerant and lubricant migration during stop-start operation. During the compressor stop period, the primary refrigerant mass migration is caused by, and follows, the diminishing pressure difference across the expansion device. The secondary refrigerant migration is caused by a pressure gradient as a result of thermal nonequilibrium within the system and causes only vapor phase refrigerant migration. Lubricant migration is proportional to the refrigerant mass during the primary refrigerant mass migration. During the secondary refrigerant mass migration lubricant is not migrating. The start-up refrigerant mass migration is caused by an imbalance of the refrigerant mass flow rates across the compressor and expansion device. The higher compressor refrigerant mass flow rate was a result of the entrainment of foam into the U-tube of the accumulator. The lubricant mass migration during the start-up was not proportional to the refrigerant mass migration. The presence of water condensate on the evaporator affected the refrigerant mass migration during the compressor stop period. Caused by an evaporative cooling effect the evaporator held 56 percent of the total refrigerant mass in the system after three minutes of compressor stop time-compared to 25 percent when no water condensate was present on the evaporator coil. Foam entrainment led to a faster lubricant and refrigerant mass migration out of the accumulator than liquid entrainment through the hole at the bottom of the U-tube. The latter was observed for when water condensate was present on the evaporator coil because-as a result of the higher amount of refrigerant mass in the evaporator before start-up-the entrainment of foam into the U-tube of the accumulator ceased before the steady state refrigerant mass distribution was reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.