938 resultados para electricity distribution network
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
The most straightforward European single energy market design would entail a European system operator regulated by a single European regulator. This would ensure the predictable development of rules for the entire EU, significantly reducing regulatory uncertainty for electricity sector investments. But such a first-best market design is unlikely to be politically realistic in the European context for three reasons. First, the necessary changes compared to the current situation are substantial and would produce significant redistributive effects. Second, a European solution would deprive member states of the ability to manage their energy systems nationally. And third, a single European solution might fall short of being well-tailored to consumers’ preferences, which differ substantially across the EU. To nevertheless reap significant benefits from an integrated European electricity market, we propose the following blueprint: First, we suggest adding a European system-management layer to complement national operation centres and help them to better exchange information about the status of the system, expected changes and planned modifications. The ultimate aim should be to transfer the day-to-day responsibility for the safe and economic operation of the system to the European control centre. To further increase efficiency, electricity prices should be allowed to differ between all network points between and within countries. This would enable throughput of electricity through national and international lines to be safely increased without any major investments in infrastructure. Second, to ensure the consistency of national network plans and to ensure that they contribute to providing the infrastructure for a functioning single market, the role of the European ten year network development plan (TYNDP) needs to be upgraded by obliging national regulators to only approve projects planned at European level unless they can prove that deviations are beneficial. This boosted role of the TYNDP would need to be underpinned by resolving the issues of conflicting interests and information asymmetry. Therefore, the network planning process should be opened to all affected stakeholders (generators, network owners and operators, consumers, residents and others) and enable the European Agency for the Cooperation of Energy Regulators (ACER) to act as a welfare-maximising referee. An ultimate political decision by the European Parliament on the entire plan will open a negotiation process around selecting alternatives and agreeing compensation. This ensures that all stakeholders have an interest in guaranteeing a certain degree of balance of interest in the earlier stages. In fact, transparent planning, early stakeholder involvement and democratic legitimisation are well suited for minimising as much as possible local opposition to new lines. Third, sharing the cost of network investments in Europe is a critical issue. One reason is that so far even the most sophisticated models have been unable to identify the individual long-term net benefit in an uncertain environment. A workable compromise to finance new network investments would consist of three components: (i) all easily attributable cost should be levied on the responsible party; (ii) all network users that sit at nodes that are expected to receive more imports through a line extension should be obliged to pay a share of the line extension cost through their network charges; (iii) the rest of the cost is socialised to all consumers. Such a cost-distribution scheme will involve some intra-European redistribution from the well-developed countries (infrastructure-wise) to those that are catching up. However, such a scheme would perform this redistribution in a much more efficient way than the Connecting Europe Facility’s ad-hoc disbursements to politically chosen projects, because it would provide the infrastructure that is really needed.
Resumo:
On cover: Power plant engineering handbook.
Resumo:
Mode of access: Internet.
Resumo:
A felelős vállalatirányítás egyik stratégiai jelentőségű tényezője a vállalati szintű kockázatkezelés, mely napjaink egyik legnagyobb kihívást jelentő területe a vállalatvezetés számára. A hatékony vállalati kockázatkezelés nem valósulhat meg kizárólag az általános, nemzetközi és hazai szakirodalomban megfogalmazott kockázatkezelési alapelvek követése mentén, a kockázatkezelési rendszer kialakítása során figyelembe kell venni mind az iparági, mind az adott vállalatra jellemző sajátosságokat. Mindez különösen fontos egy olyan speciális tevékenységet folytató vállalatnál, mint a villamosenergia-ipari átviteli rendszerirányító társaság (transmission system operator, TSO). A cikkben a magyar villamosenergia-ipari átviteli rendszerirányító társasággal együttműködésben készített kutatás keretében előálló olyan komplex elméleti és gyakorlati keretrendszert mutatnak be a szerzők, mely alapján az átviteli rendszerirányító társaság számára kialakítottak egy új, területenként egységes kockázatkezelési módszertant (fókuszban a kockázatok azonosításának és számszerűsítésének módszertani lépéseivel), mely alkalmas a vállalati szintű kockázati kitettség meghatározására. _______ This study handles one of today’s most challenging areas of enterprise management: the development and introduction of an integrated and efficient risk management system. For companies operating in specific network industries with a dominant market share and a key role in the national economy, such as electricity TSO’s, risk management is of stressed importance. The study introduces an innovative, mathematically and statistically grounded as well as economically reasoned management approach for the identification, individual effect calculation and summation of risk factors. Every building block is customized for the organizational structure and operating environment of the TSO. While the identification phase guarantees all-inclusivity, the calculation phase incorporates expert techniques and Monte Carlo simulation and the summation phase presents an expected combined distribution and value effect of risks on the company’s profit lines based on the previously undiscovered correlations between individual risk factors.
Resumo:
In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.
Resumo:
Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.