996 resultados para eastern Pacific Ocean
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Mapa que demuestra el derrotero q[ue] : hizo M. Cook en 1776, 1777, 1778, y 1779 en su tercero y ultimo viaje. It was published by Libreria de Copin in [1780]. Scale [ca. 1:600,000]. Map in Spanish. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'Mercator' projection with the central meridian at 180 degrees west. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. Note: The central meridian of this map is not the same as the Prime Meridian and may wrap the International Date Line or overlap itself when displayed in GIS software. This map shows features such as drainage, cities and other human settlements, shoreline features, and more. Relief shown pictorially. Shows the route of James Cook's Pacific Ocean expeditions in the HMS Resolution, 1776-1779. Includes notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Pacific Ocean : compiled from Admiralty surveys & other official sources by the India-Rubber, Gutta-Percha & Telegraph Works Co. It was published by J.D. Potter in [1899]. Scale [ca. 1:15,000,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'Mercator' projection with the central meridian at 170 degrees west. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. Note: The central meridian of this map is not the same as the Prime Meridian and may wrap the International Date Line or overlap itself when displayed in GIS software. This map shows features such as drainage, territorial boundaries, shoreline features, and more. Relief shown by hachures. Depths shown by soundings. Shows routes of Admiralty surveys. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Six sites (759-764) were drilled on the Exmouth Plateau during Ocean Drilling Program Leg 122. Nannofossilrich Cenozoic sediments were recovered at all six sites, reflecting the open-ocean conditions that prevailed over the Exmouth Plateau during the Cenozoic. Calcareous nannofossils are abundant, diverse (250 different species identified), and generally well preserved throughout the composite lower Paleocene to Quaternary section. The diversity and preservation of nannofossils permits a high degree of stratigraphic resolution at each site. Site 762 on the central part of the Exmouth Plateau contains an almost unbroken Cenozoic record (only Miocene Zones NN3, NN8, and NN10 are missing). This site may prove to be a useful Cenozoic biostratigraphic and biomagnetochronologic reference section for the eastern Indian Ocean.
Resumo:
Fifty radiolarian events of early Pleistocene and Neogene age were identified in an E-W transect of equatorial DSDP sites, extending from the Gulf of Panama to the western Pacific and eastern Indian Oceans. Our objective was to document the degree of synchroneity or time-transgressiveness of stratigraphically-useful datum levels from this geologic time interval. We restricted our study to low latitudes within which morphological variations of individual taxa are minimal, the total assemblage diversity remains high, and stratigraphic continuity is well-documented by an independent set of criteria. Each of the five sites chosen (503, 573, 289/586, 214) was calibrated to an "absolute" time scale, using a multiple of planktonic foraminiferal, nannofossil, and diatom datum levels which have been independently correlated to the paleomagnetic polarity time scale in piston core material. With these correlations we have assigned "absolute" ages to each radiolarian event, with a precision of 0.1-0.2 m.y. and an accuracy of 0.2-0.4 m.y. On this basis we have classified each of the events as either: (a) synchronous (range of ages <0.4 m.y.); (b) time-transgressive (i.e., range of ages >1.0 m.y.); and (c) not resolvable (range of ages 0.4-1.0 m.y.). Our results show that, among the synchronous datum levels, a large majority (15 out of 19) are last occurrences. Among those events which are clearly time-transgressive, most are first appearances (10 out of 13). In many instances taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is particularly unexpected in view of the strong east-to-west zonal flow in equatorial latitudes. Three of the time-transgressive events have been used to define zonal boundaries: the first appearances of Spongaster pentas, Diartus hughesi, and D. petterssoni. Our results suggest that biostratigraphic non-synchroneity may be substantial (i.e., greater than 1 m.y.) within a given latitudinal zone; one would expect this effect to be even more pronounced across oceanographic and climatic gradients. We anticipate that the extent of diachroneity may be comparable for diatom, foraminiferal, and nannofossil datum levels as well. If this proves true, global "time scales" may need to be re-formulated on the basis of a smaller number of demonstrably synchronous events.
Resumo:
The neodymium isotopic composition of the silicate fraction of Holocene pelagic sediments from the North Pacific define two provinces: a central North Pacific province characterized by unradiogenic and remarkably homogeneous end (-10.2 +/- 0.5) and a narrow circum-Pacific marginal province characterized by more radiogenic and variable end (-4.2 +/- 3.8). The silicate fraction in the central North Pacific is exclusively eolian; based on prevailing wind patterns, meteorological data, and neodymium isotopic data, the only significant sediment source is Chinese loess. Leaching experiments on Chinese loess confirm that leachable Nd is isotopically indistinguishable from bulk and residual silicate Nd. Silicates in the circum-North Pacific marginal province comprise eolian loess, volcanic ash, and hemipelagic sediments derived from volcanic arcs. A compilation of Pacific seawater and Mn nodule epsilon-Nd data shows no clear spatial variation except for a general decrease from surface to deep waters from -3 to -4 and slightly lower epsilon-Nd in bottom waters along the western North Pacific due to the incursion of Antarctic Bottom Water. The relative homogeneity of bottom water epsilon-Nd, which contrasts sharply with the distinctive variation in sediment epsilon-Nd, plus the large difference between the average end of bottom waters and the central North Pacific eolian silicates (-4 vs. -10), suggests that any contribution of REE to seawater from eolian materials is insignificant. Furthermore, leaching of REE from eolian particles as they sink though the water column must be insignificant because Nd in shallow waters is more radiogenic than Nd in deeper waters. That there is no contrast in the Nd isotopic composition of bottom waters that overlie the central and marginal sediment provinces suggests that the ash and hemipelagic sediments derived from Pacific rim volcanic arcs also contribute minimal REE to seawater. The elimination of eolian, ash, and hemipelagic sediments leaves only near-shore riverine particulates as a possibly significant particulate source of REE to seawater.