951 resultados para dynamic user behavior
Resumo:
Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance.
Resumo:
Findings on the role that emotion plays in human behavior have transformed Artificial Intelligence computations. Modern research explores how to simulate more intelligent and flexible systems. Several studies focus on the role that emotion has in order to establish values for alternative decision and decision outcomes. For instance, Busemeyer et al. (2007) argued that emotional state affects the subjectivity value of alternative choice. However, emotional concepts in these theories are generally not defined formally and it is difficult to describe in systematic detail how processes work. In this sense, structures and processes cannot be explicitly implemented. Some attempts have been incorporated into larger computational systems that try to model how emotion affects human mental processes and behavior (Becker-Asano & Wachsmuth, 2008; Marinier, Laird & Lewis, 2009; Marsella & Gratch, 2009; Parkinson, 2009; Sander, Grandjean & Scherer, 2005). As we will see, some tutoring systems have explored this potential to inform user models. Likewise, dialogue systems, mixed-initiative planning systems, or systems that learn from observation could also benefit from such an approach (Dickinson, Brew & Meurers, 2013; Jurafsky & Martin, 2009). That is, considering emotion as interaction can be relevant in order to explain the dynamic role it plays in action and cognition (see Boehner et al., 2007).
Resumo:
Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.
Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.
To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.
All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
We estimate a dynamic model of mortgage default for a cohort of Colombian debtors between 1997 and 2004. We use the estimated model to study the effects on default of a class of policies that affected the evolution of mortgage balances in Colombia during the 1990's. We propose a framework for estimating dynamic behavioral models accounting for the presence of unobserved state variables that are correlated across individuals and across time periods. We extend the standard literature on the structural estimation of dynamic models by incorporating an unobserved common correlated shock that affects all individuals' static payoffs and the dynamic continuation payoffs associated with different decisions. Given a standard parametric specification the dynamic problem, we show that the aggregate shocks are identified from the variation in the observed aggregate behavior. The shocks and their transition are separately identified, provided there is enough cross-sectionavl ariation of the observeds tates.
Resumo:
Investigation of large, destructive earthquakes is challenged by their infrequent occurrence and the remote nature of geophysical observations. This thesis sheds light on the source processes of large earthquakes from two perspectives: robust and quantitative observational constraints through Bayesian inference for earthquake source models, and physical insights on the interconnections of seismic and aseismic fault behavior from elastodynamic modeling of earthquake ruptures and aseismic processes.
To constrain the shallow deformation during megathrust events, we develop semi-analytical and numerical Bayesian approaches to explore the maximum resolution of the tsunami data, with a focus on incorporating the uncertainty in the forward modeling. These methodologies are then applied to invert for the coseismic seafloor displacement field in the 2011 Mw 9.0 Tohoku-Oki earthquake using near-field tsunami waveforms and for the coseismic fault slip models in the 2010 Mw 8.8 Maule earthquake with complementary tsunami and geodetic observations. From posterior estimates of model parameters and their uncertainties, we are able to quantitatively constrain the near-trench profiles of seafloor displacement and fault slip. Similar characteristic patterns emerge during both events, featuring the peak of uplift near the edge of the accretionary wedge with a decay toward the trench axis, with implications for fault failure and tsunamigenic mechanisms of megathrust earthquakes.
To understand the behavior of earthquakes at the base of the seismogenic zone on continental strike-slip faults, we simulate the interactions of dynamic earthquake rupture, aseismic slip, and heterogeneity in rate-and-state fault models coupled with shear heating. Our study explains the long-standing enigma of seismic quiescence on major fault segments known to have hosted large earthquakes by deeper penetration of large earthquakes below the seismogenic zone, where mature faults have well-localized creeping extensions. This conclusion is supported by the simulated relationship between seismicity and large earthquakes as well as by observations from recent large events. We also use the modeling to connect the geodetic observables of fault locking with the behavior of seismicity in numerical models, investigating how a combination of interseismic geodetic and seismological estimates could constrain the locked-creeping transition of faults and potentially their co- and post-seismic behavior.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Employees are the human capital which, to a great extent, contributes to the success and development of high-performance and sustainable organizations. In a work environment, there is a need to provide a tool for tracking and following-up on each employees' professional progress, while staying aligned with the organization’s strategic and operational goals and objectives. The research work within this Thesis aims to contribute to improve employees' selfawareness and auto-regulation; two predominant research areas are also studied and analyzed: Visual Analytics and Gamification. The Visual Analytics enables the specification of personalized dashboard interfaces with alerts and indicators to keep employees aware of their skills and to continuously monitor how to improve their expertise, promoting simultaneously behavioral change and adoption of good-practices. The study of Gamification techniques with Talent Management features enabled the design of new processes to engage, motivate, and retain highly productive employees, and to foster a competitive working environment, where employees are encouraged to be involved in new and rewarding activities, where knowledge and experience are recognized as a relevant asset. The Design Science Research was selected as the research methodology; the creation of new knowledge is therefore based on an iterative cycle addressing concepts such as design, analysis, reflection, and abstraction. By collaborating in an international project (Active@Work), funded by the Active and Assisted Living Programme, the results followed a design thinking approach regarding the specification of the structure and behavior of the Skills Development Module, namely the identification of requirements and the design of an innovative info-structure of metadata to support the user experience. A set of mockups were designed based on the user role and main concerns. Such approach enabled the conceptualization of a solution to proactively assist the management and assessment of skills in a personalized and dynamic way. The outcomes of this Thesis aims to demonstrate the existing articulation between emerging research areas such as Visual Analytics and Gamification, expecting to represent conceptual gains in these two research fields.
Resumo:
Traditional decision making research has often focused on one's ability to choose from a set of prefixed options, ignoring the process by which decision makers generate courses of action (i.e., options) in-situ (Klein, 1993). In complex and dynamic domains, this option generation process is particularly critical to understanding how successful decisions are made (Zsambok & Klein, 1997). When generating response options for oneself to pursue (i.e., during the intervention-phase of decision making) previous research has supported quick and intuitive heuristics, such as the Take-The-First heuristic (TTF; Johnson & Raab, 2003). When generating predictive options for others in the environment (i.e., during the assessment-phase of decision making), previous research has supported the situational-model-building process described by Long Term Working Memory theory (LTWM; see Ward, Ericsson, & Williams, 2013). In the first three experiments, the claims of TTF and LTWM are tested during assessment- and intervention-phase tasks in soccer. To test what other environmental constraints may dictate the use of these cognitive mechanisms, the claims of these models are also tested in the presence and absence of time pressure. In addition to understanding the option generation process, it is important that researchers in complex and dynamic domains also develop tools that can be used by `real-world' professionals. For this reason, three more experiments were conducted to evaluate the effectiveness of a new online assessment of perceptual-cognitive skill in soccer. This test differentiated between skill groups and predicted performance on a previously established test and predicted option generation behavior. The test also outperformed domain-general cognitive tests, but not a domain-specific knowledge test when predicting skill group membership. Implications for theory and training, and future directions for the development of applied tools are discussed.
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
Social capital, or social cohesion or group connectedness, can influence both HIV risk behavior and substance use. Because recent immigrants undergo a change in environment, one of the consequences can be a change in social capital. There may be an association among changes in social capital, and HIV risk behavior and substance use post immigration. The dissertation focused on the interface of these three variables among recent Latino immigrants (RLIs) in South Florida. The first manuscript is a systematic review of social capital and HIV risk behavior, and served as a partial background for the second and third manuscripts. Twelve papers with a measure of social capital as an independent variable and HIV risk as the dependent variable were included in the analysis. Eleven studies measured social capital at the individual level, and one study measured social capital at the group level. HIV risk was influenced by social capital, but the type of influence was dependent on the type of social capital and on the study population. Cognitive social capital, or levels of collective action, was protective against HIV in both men and women. The role of structural social capital, or levels of civic engagement/group participation, on HIV risk was dependent on the type of structural social capital and varied by gender. Microfinance programs and functional group participation were protective for women, while dysfunctional group participation and peer-level support may have increased HIV risk among men. The second manuscript was an original study assessing changes in social capital and HIV risk behavior pre to post immigration among RLIs in South Florida (n=527). HIV risk behavior was assessed through the frequency of vaginal-penile condom use, and the number of sexual partners. It was a longitudinal study using secondary data analysis to assess changes in social capital and HIV risk behavior pre immigration to two years post immigration, and to determine if there was a relationship between the two variables. There was an 8% decrease in total social capital (p ˂ .05). Reporting of ‘Never use’ of condoms in the past 90 days increased in all subcategories (p ˂ .05). Single men had a decrease in number of sexual partners (p ˂ .05). Lower social capital measured on the dimension of ‘friend and other’ was marginally associated with fewer sexual partners. The third manuscript was another original study looking at the association between social capital and substance use among RLIs in South Florida (n=527). Substance use with measured by frequency of hazardous alcoholic drinking, and illicit drug use. It was a longitudinal study of social capital and substance-use from pre to two years post immigration. Post-immigration, social capital, hazardous drinking and illicit drug use decreased (p˂.001). After adjusting for time, compared to males, females were less likely to engage in hazardous drinking (OR=.31, p˂.001), and less likely to engage in illicit drug use (OR=.67, p=.01). Documentation status was a moderator between social capital and illicit drug use. ‘Business’ and ‘Agency’ social capital were associated with changes in illicit drug use for documented immigrants. After adjusting for gender and marital status, on average, documented immigrants with a one-unit increase in ‘business’ social capital were 1.2 times more likely to engage in illicit drug use (p˂.01), and documented immigrants with one-unit increase in ‘agency’ social capital were 38% less likely to engage in illicit drug use (p˂.01). ‘Friend and other’ social capital was associated with a decrease in illicit drug use among undocumented immigrants. After adjusting for gender and marital status, on average, undocumented immigrants with a one-unit increase in ‘friend and other’ social capital were 45% less likely to engage in hazardous drinking and 44% less likely to use illicit drugs (p˂.01, p˂.05). Studying these three domains is relevant because HIV continues to be a public health issue, particularly in Miami-Dade County, which is ranked among other U.S. regions with high rates of HIV/AIDS prevalence. Substance use is associated with HIV risk behavior; in most studies, increased substance use is associated with increased chances of HIV risk behavior. Immigration, which is the hypothesized catalyst for the change in social capital, has an impact on the dynamic of a society. Greater immigration can be burdensome on the host country’s societal resources; however immigrants are also potentially a source of additional skilled labor for the workforce. Therefore, successful adaption of immigrants can have a positive influence on receiving communities. With Florida being a major receiver of immigrants to the U.S, this dissertation attempts to address an important public health issue for South Florida and the U.S. at large.
Resumo:
Random Walk with Restart (RWR) is an appealing measure of proximity between nodes based on graph structures. Since real graphs are often large and subject to minor changes, it is prohibitively expensive to recompute proximities from scratch. Previous methods use LU decomposition and degree reordering heuristics, entailing O(|V|^3) time and O(|V|^2) memory to compute all (|V|^2) pairs of node proximities in a static graph. In this paper, a dynamic scheme to assess RWR proximities is proposed: (1) For unit update, we characterize the changes to all-pairs proximities as the outer product of two vectors. We notice that the multiplication of an RWR matrix and its transition matrix, unlike traditional matrix multiplications, is commutative. This can greatly reduce the computation of all-pairs proximities from O(|V|^3) to O(|delta|) time for each update without loss of accuracy, where |delta| (<<|V|^2) is the number of affected proximities. (2) To avoid O(|V|^2) memory for all pairs of outputs, we also devise efficient partitioning techniques for our dynamic model, which can compute all pairs of proximities segment-wisely within O(l|V|) memory and O(|V|/l) I/O costs, where 1<=l<=|V| is a user-controlled trade-off between memory and I/O costs. (3) For bulk updates, we also devise aggregation and hashing methods, which can discard many unnecessary updates further and handle chunks of unit updates simultaneously. Our experimental results on various datasets demonstrate that our methods can be 1–2 orders of magnitude faster than other competitors while securing scalability and exactness.
Resumo:
An anastomosis is a surgical procedure that consists of the re-connection of two parts of an organ and is commonly required in cases of colorectal cancer. Approximately 80% of the patients diagnosed with this problem require surgery. The malignant tissue located on the gastrointestinal track must be resected and the most common procedure adopted is the anastomosis. Studies made with 2,980 patients that had this procedure, show that the leakage through the anastomosis was 5.1%. This paper discusses the dynamic behavior of N2O gas through different sized leakages as detected by an Infra-Red gas sensor and how the sensors response time changes depending on the leakage size. Different sized holes were made in the rigid tube to simulate an anastomostic leakage. N2O gas was injected into the tube through a pipe and the leakage rate measured by the infra-red gas sensor. Tests were also made experimentally also using a CFD (Computational Fluid Dynamics) package called FloWorks. The results will be compared and discussed in this paper.
Resumo:
Monitoring user interaction activities provides the basis for creating a user model that can be used to predict user behaviour and enable user assistant services. The BaranC framework provides components that perform UI monitoring (and collect all associated context data), builds a user model, and supports services that make use of the user model. In this case study, a Next-App prediction service is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic; it is dynamic both in responding to the current context, and also in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.