954 resultados para drug brain level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose of the study: Reduced subjective experience of reward (anhedonia) is a key symptom of major depression. We have developed a human model of reward processing to investigate the neural correlates of anhedonia. Methods: We report the data from studies that examined reward processing using functional magnetic resonance imaging (fMRI) in those vulnerable to depression. We also report the effects of antidepressant medications on our neural model of reward processing and on the resting state in healthy volunteers. Results: Our results thus far indicate that deficits in reward processing are apparent in those vulnerable to depression, and also that antidepressant medication modulates reward processing and resting state functional connectivity in parts of the brain consistent with serotonin and catecholamine transmitter pathways in healthy volunteers. Conclusions: We conclude that this type of human model of reward processing might be useful in detecting biomarkers for depression and also in illuminating why antidepressant medications may not be very effective in treating anhedonia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractBackground Depression in adolescence is debilitating with high recurrence in adulthood, yet its pathophysiological mechanism remains enigmatic. To examine the interaction between emotion, cognition and treatment, functional brain responses to sad and happy distractors in an affective go/no-go task were explored before and after Cognitive Behavioural Therapy (CBT) in depressed female adolescents, and healthy participants. Methods Eighty-two Depressed and 24 healthy female adolescents, aged 12 to 17 years, performed a functional magnetic resonance imaging (fMRI) affective go/no-go task at baseline. Participants were instructed to withhold their responses upon seeing happy or sad words. Among these participants, 13 patients had CBT over approximately 30 weeks. These participants and 20 matched controls then repeated the task. Results At baseline, increased activation in response to happy relative to neutral distractors was observed in the orbitofrontal cortex in depressed patients which was normalized after CBT. No significant group differences were found behaviourally or in brain activation in response to sad distractors. Improvements in symptoms (mean: 9.31, 95% CI: 5.35-13.27) were related at trend-level to activation changes in orbitofrontal cortex. Limitations In the follow-up section, a limited number of post-CBT patients were recruited. Conclusions To our knowledge, this is the first fMRI study addressing the effect of CBT in adolescent depression. Although a bias toward negative information is widely accepted as a hallmark of depression, aberrant brain hyperactivity to positive distractors was found and normalised after CBT. Research, assessment and treatment focused on positive stimuli could be a future consideration. Moreover, a pathophysiological mechanism distinct from adult depression may be suggested and awaits further exploration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug abuse is a concerning health problem in adults and has been recognized as a major problem in adolescents. induction of immediate-early genes (IEG), such as c-Fos or Egr-1, is used to identify brain areas that become activated in response to various stimuli, including addictive drugs. It is known that the environment can alter the response to drugs of abuse. Accordingly, environmental cues may trigger drug-seeking behavior when the drug is repeatedly administered in a given environment. The goal of this study was first to examine for age differences in context-dependent sensitization and then evaluate IEG expression in different brain regions. For this, groups of mice received i.p. ethanol (2.0 g/kg) or saline in the test apparatus, while other groups received the solutions in the home cage, for 15 days. One week after this treatment phase, mice were challenged with ethanol injection. Acutely, ethanol increased both locomotor activity and IEG expression in different brain regions, indistinctly, in adolescent and adult mice. However, adults exhibited a typical context-dependent behavioral sensitization following repeated ethanol treatment, while adolescent mice presented gradually smaller locomotion across treatment, when ethanol was administered in a paired regimen with environment. Conversely, ethanol-treated adolescents expressed context-independent behavioral sensitization. Overall, repeated ethanol administration desensitized IEG expression in both adolescent and adult mice, but this effect was greatest in the nucleus accumbens and prefrontal cortex of adolescents treated in the context-dependent paradigm. These results suggest developmental differences in the sensitivity to the conditioned and unconditioned locomotor effects of ethanol. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The family of Cyclin-Dependent Kinases (CDKs) can be subdivided into two major functional groups based on their roles in cell cycle and/or transcriptional control. CDK9 is the catalytic subunit of positive transcription elongation factor b (P-TEFb). CDK9 is the kinase of the TAK complex (Tat-associated kinase complex), and binds to Tat protein of HIV, suggesting a possible role for CDK9 in AIDS progression. CDK9 complexed with its regulatory partner cyclin T1, serves as a cellular mediator of the transactivation function of the HIV Tat protein. P-TEFb is responsible for the phosphorylation of the carboxyl-terminal domain of RNA Pol II, resulting in stimulation of transcription. Furthermore, the complexes containing CDK9 induce the differentiation in distinct tissue. The CDK9/cyclin T1 complex is expressed at higher level in more differentiated primary neuroectodermal and neuroblastoma tumors, showing a correlation between the kinase expression and tumor differentiation grade. This may have clinical and therapeutical implications for these tumor types. Among the CDK inhibitors two have shown to be effective against CDK9: Roscovitine and Flavopiridol. These two inhibitors prevented the replication of human immunodeficiency virus (HIV) type 1 by blocking Tat transactivation of the HIV type 1 promoter. These compounds inhibit CDKs by binding to the catalytic domain in place of ATP, preventing transfer of a phosphate group to the substrate. More sensitive therapeutic agents of CDK9 can be designed, and structural studies can add information in the understanding of this kinase. The major features related to CDK9 inhibition will be reviewed in this article.