739 resultados para drag
Resumo:
Recent studies using comprehensive middle atmosphere models predict a strengthening of the Brewer-Dobson circulation in response to climate change. To gain confidence in the realism of this result it is important to quantify and understand the contributions from the different components of stratospheric wave drag that cause this increase. Such an analysis is performed here using three 150-yr transient simulations from the Canadian Middle Atmosphere Model (CMAM), a Chemistry-Climate Model that simulates climate change and ozone depletion and recovery. Resolved wave drag and parameterized orographic gravity wave drag account for 60% and 40%, respectively, of the long-term trend in annual mean net upward mass flux at 70 hPa, with planetary waves accounting for 60% of the resolved wave drag trend. Synoptic wave drag has the strongest impact in northern winter, where it accounts for nearly as much of the upward mass flux trend as planetary wave drag. Owing to differences in the latitudinal structure of the wave drag changes, the relative contribution of resolved and parameterized wave drag to the tropical upward mass flux trend over any particular latitude range is highly sensitive to the range of latitudes considered. An examination of the spatial structure of the climate change response reveals no straightforward connection between the low-latitude and high-latitude changes: while the model results show an increase in Arctic downwelling in winter, they also show a decrease in Antarctic downwelling in spring. Both changes are attributed to changes in the flux of stationary planetary wave activity into the stratosphere.
Resumo:
Observations show that stratospheric water vapor (SWV) concentrations increased by ~30% between 1980 and 2000. SWV has also been projected to increase by up to a factor of two over the 21st century. Trends in SWV impact on stratospheric temperatures, which may lead to changes in the stratospheric circulation. Perturbations in temperature and wind in the stratosphere have been shown to influence the extratropical tropospheric circulation. This study investigates the response to a uniform doubling in SWV from 3 to 6 ppmv in a comprehensive stratosphere-resolving atmospheric-GCM. The increase in SWV causes stratospheric cooling with a maximum amplitude of 5-6 K in the polar lower stratosphere and 2-3 K in the tropical lower stratosphere. The zonal wind on the upper flanks of the subtropical jets is more westerly by up to ~5 m s−1. Changes in resolved wave drag in the stratosphere result in an increase in the strength of tropical upwelling associated with the Brewer-Dobson circulation of ~10% throughout the year. In the troposphere, the increase in SWV causes significant meridional dipole changes in the midlatitude zonal-mean zonal wind of up to 2.8 m s−1 at 850 hPa, which are largest in boreal winter in both hemispheres. This suggests a more poleward storm track under uniformly increased stratospheric water vapor. The circulation changes in both the stratosphere and troposphere are almost entirely due to the increase in SWV at pressures greater than 50 hPa. The results show that long-term trends in SWV may impact on stratospheric temperatures and wind, the strength of the Brewer-Dobson circulation and extratropical surface climate.
Resumo:
The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.
Resumo:
The impact of a new approach to the evaluation of surface gravity wave drag (GWD) is assessed. This approach uses linear theory, but incorporates the effects of wind profile shear and curvature, by means of a second-order WKB approximation. While the theory predicts the possibility of either drag enhancement or reduction, depending on the wind profile, results obtained with the ERA-40 reanalysis data clearly indicate the predominance of local drag enhancement. However, the global impact of shear on the atmospheric axial GWD torque comes mostly from regions with predominantly easterly flow, contributing to a slight reduction of the bias found in different studies of the global angular momentum budget. The relative correction due to shear on linear GWD is found not to depend too strongly on the levels chosen for the computation of the low-level wind derivatives.
Resumo:
Using linear theory, it is shown that, in resonant flow over a 2D mountain ridge, such as exists when a layer of uniform wind is topped by an environmental critical level, the conditions for internal gravity-wave breaking are different from those determined in previous studies for non-resonant flows. For Richardson numbers in the shear layer not exceeding 2.25, two zones of flow overturning exist, respectively below and downstream and above and upstream of the expected locations. Flow overturning occurs for values of the dimensionless height of the ridge smaller than those required for a uniform wind profile. These results may have implications for the physical understanding of high-drag states.
Resumo:
The plume of Ice Shelf Water (ISW) flowing into the Weddell Sea over the Filchner sill contributes to the formation of Antarctic Bottom Water. The Filchner overflow is simulated using a hydrostatic, primitive equation three-dimensional ocean model with a 0.5–2 Sv ISW influx above the Filchner sill. The best fit to mooring temperature observations is found with influxes of 0.5 and 1 Sv, below a previous estimate of 1.6 ± 0.5 Sv based on sparse mooring velocities. The plume first moves north over the continental shelf, and then turns west, along slope of the continental shelf break where it breaks up into subplumes and domes, some of which then move downslope. Other subplumes run into the eastern submarine ridge and propagate along the ridge downslope in a chaotic manner. The next, western ridge is crossed by the plume through several paths. Despite a number of discrepancies with observational data, the model reproduces many attributes of the flow. In particular, we argue that the temporal variability shown by the observations can largely be attributed to the unstable structure of the flow, where the temperature fluctuations are determined by the motion of the domes past the moorings. Our sensitivity studies show that while thermobaricity plays a role, its effect is small for the flows considered. Smoothing the ridges out demonstrate that their presence strongly affects the plume shape around the ridges. An increase in the bottom drag or viscosity leads to slowing down, and hence thickening and widening of the plume
Resumo:
It is well established that variations in polar stratospheric winds can affect mesospheric temperatures through changes in the filtering of gravity wave fluxes, which drive a residual circulation in the mesosphere. The Canadian Middle Atmosphere Model(CMAM) is used to examine this vertical coupling mechanism in the context of the mesospheric response to the Antarctic ozone hole. It is found that the response differs significantly between late spring and early summer, because of a changing balance between the competing effects of parametrised gravity wavedrag (GWD)and changes in resolved wave drag local to the mesosphere. In late spring, the strengthened stratospheric westerlies arising from the ozone hole lead to reduced eastward GWD in the mesosphere and a warming of the polar mesosphere, just as in the well known mesospheric response to sudden stratospheric warmings, but with an opposite sign.In early summer, with easterly flow revailing over most of the polar stratosphere,the strengthened easterly wind shear within the mesosphere arising from the west ward GWD anomaly induces a positive resolved wave drag anomaly through baroclinic instability. The polar cooling induced by this process completely dominates the upper mesospheric response to the ozone hole in early summer. Consequences for the past and future evolution of noctilucent clouds are discussed
Resumo:
A robust feature of the observed response to El Nin˜o–Southern Oscillation (ENSO) is an altered circulation in the lower stratosphere. When sea surface temperatures (SSTs) in the tropical Pacific are warmer there is enhanced upwelling and cooling in the tropical lower stratosphere and downwelling and warming in the midlatitudes, while the opposite is true of cooler SSTs. The midlatitude lower stratospheric response to ENSO is larger in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH). In this study the dynamical version of the Canadian Middle Atmosphere Model (CMAM) is used to simulate 25 realizations of the atmospheric response to the 1982/83 El Nin˜o and the 1973/74 La Nin˜ a. This version ofCMAMis a comprehensive high-top general circulation model that does not include interactive chemistry. The observed lower stratospheric response to ENSO is well reproduced by the simulations, allowing them to be used to investigate the mechanisms involved. Both the observed and simulated responses maximize in December–March and so this study focuses on understanding the mechanisms involved in that season. The response in tropical upwelling is predominantly driven by anomalous transient synoptic-scale wave drag in the SH subtropical lower stratosphere, which is also responsible for the compensating SH midlatitude response. This altered wave drag stems from an altered upward flux of wave activity from the troposphere into the lower stratosphere between 208 and 408S. The altered flux of wave activity can be divided into two distinct components. In the Pacific, the acceleration of the zonal wind in the subtropics from the warmer tropical SSTs results in a region between the midlatitude and subtropical jets where there is an enhanced source of low phase speed eddies. At other longitudes, an equatorward shift of the midlatitude jet from the extratropical tropospheric response to El Nin˜o results in an enhanced source of waves of higher phase speeds in the subtropics. The altered resolved wave drag is only apparent in the SH and the difference between the two hemispheres can be related to the difference in the climatological jet structures in this season and the projection of the wind anomalies associated with ENSO onto those structures.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
A version of the Canadian Middle Atmosphere Model that is coupled to an ocean is used to investigate the separate effects of climate change and ozone depletion on the dynamics of the Southern Hemisphere (SH) stratosphere. This is achieved by performing three sets of simulations extending from 1960 to 2099: 1) greenhouse gases (GHGs) fixed at 1960 levels and ozone depleting substances (ODSs) varying in time, 2) ODSs fixed at 1960 levels and GHGs varying in time, and 3) both GHGs and ODSs varying in time. The response of various dynamical quantities to theGHGand ODS forcings is shown to be additive; that is, trends computed from the sum of the first two simulations are equal to trends from the third. Additivity is shown to hold for the zonal mean zonal wind and temperature, the mass flux into and out of the stratosphere, and the latitudinally averaged wave drag in SH spring and summer, as well as for final warming dates. Ozone depletion and recovery causes seasonal changes in lower-stratosphere mass flux, with reduced polar downwelling in the past followed by increased downwelling in the future in SH spring, and the reverse in SH summer. These seasonal changes are attributed to changes in wave drag caused by ozone-induced changes in the zonal mean zonal winds. Climate change, on the other hand, causes a steady decrease in wave drag during SH spring, which delays the breakdown of the vortex, resulting in increased wave drag in summer
Resumo:
The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 Kdecade21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces awestward acceleration of the lower-stratosphericwind over theAntarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade21 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (;70 hPa) increases by almost 2% decade21, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.
Resumo:
The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.
Resumo:
The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
It is shown that under reasonable assumptions, conservation of angular momentum provides a strong constraint on gravity wave drag feedbacks to radiative perturbations in the middle atmosphere. In the time mean, radiatively induced temperature perturbations above a given altitude z cannot induce changes in zonal mean wind and temperature below z through feedbacks in gravity wave drag alone (assuming an unchanged gravity wave source spectrum). Thus, despite the many uncertainties in the parameterization of gravity wave drag, the role of gravity wave drag in middle-atmosphere climate perturbations may be much more limited than its role in climate itself. This constraint limits the possibilities for downward influence from the mesosphere. In order for a gravity wave drag parameterization to respect the momentum constraint and avoid spurious downward influence, any nonzero parameterized momentum flux at a model lid must be deposited within the model domain, and there must be no zonal mean sponge layer. Examples are provided of how violation of these conditions leads to spurious downward influence. For planetary waves, the momentum constraint does not prohibit downward influence, but it limits the mechanisms by which it can occur: in the time mean, downward influence from a radiative perturbation can only arise through changes in reflection and meridional propagation properties of planetary waves.