956 resultados para dorsolateral prefrontal cortex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Tourette syndrome (TS) implicates the disinhibition of the cortico-striatal-thalamic-cortical circuitry (CSTC). Previous studies used a volumetric approach to investigate this circuitry with inconsistent findings. Cortical thickness may represent a more reliable measure than volume due to the low variability in the cytoarchitectural structure of the grey matter. Methods: 66 magnetic resonance imaging scans were acquired from 34 TS (age range 10-25, mean 17.19±4.1) and 32 normal controls (NC) (age range 10-20, mean 16.33±3.56). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. Results: We report (1) significant cortical thinning in the fronto-parietal and somatosensory-motor cortices in TS relative to NC (p<0.05); (2) TS boys showed thinner cortex relative to TS girls in the fronto-parietal cortical regions (p<0.05); (3) significant decrease in the fronto-parietal mean cortical thickness in TS with age relative to NC and in the pre-central cortex in TS boys relative to TS girls; (4) significant negative correlations between tic severity and the somatosensory-motor cortical thickness. Conclusions: TS revealed important thinning in brain regions particularly involved in the somatosensory/motor bodily representations which may play an important role in tics. Our findings are in agreement with Leckman et al. (1991) hypothesis stating that facial tics would be associated with dysfunction in an orofacial subset of the motor circuit, eye blinking with the occulo-motor circuit, whereas lack of inhibition to a dysfunction in the prefrontal cortex. Gender and age differences may reflect differential etiological factors, which have significant clinical relevance in TS and should be considered in developing and using diagnostic and therapeutic interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes the long-lasting psychological after-effects of a traumatic experience. There is growing lmowledge of the biomedical underpinnings of these phenomena: the underlying mechanisms belong to an implicit learning process whereby the victim remains under the influence of painful past experiences. One of these mechanisms concerns the development of a traumatic bonding which Iioticeably impedes the establishment of interpersona! relationships. The other mechanism, called "contextualisation deficit", is the difficulty of adjusting a person's emotional and behavioural reactivity to the context of present day !ife. This capacity of a traumatic experience to become incrusted long-termina human being's mind, and to haunt the victim with various forms of psychological and physical suffering, can be compared with the presence of a tumour or an abscess in somatic medicine. Th us, severe drug addiction can be conceptualised as a disorder in which the patient tries - in most cases ineffectively - to soothe the pain of today's world in cmmection with the trauma of the past. In conclusion, this article urges the development of psychiatrie care programmes which operate at the centre of the suffering encountered by the se patients, as a complement to the already well-established offers such as harm reduction, substitution therapy and social support.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irritability, together with depression and anxiety, form three salient clinical features of pre-symptomatic Huntington's disease (HD). To date, the understanding of irritability in HD suffers from a paucity of experimental data and is largely based on questionnaires or clinical anecdotes. Factor analysis suggests that irritability is related to impulsivity and aggression and is likely to engage the same neuronal circuits as these behaviours, including areas such as medial orbitofrontal cortex (OFC) and amygdala. 16 pre-symptomatic gene carriers (PSCs) and 15 of their companions were asked to indicate the larger of two squares consecutively shown on a screen while undergoing functional magnetic resonance imaging (fMRI). Despite correct identification of the larger square, participants were often told that they or their partner had given the wrong answer. Size differences were subtle to make negative feedback credible but detectable. Although task performance, baseline irritability, and reported task-induced irritation were the same for both groups, fMRI revealed distinct neuronal processing in those who will later develop HD. In controls but not PSCs, task-induced irritation correlated positively with amygdala activation and negatively with OFC activation. Repetitive negative feedback induced greater amygdala activations in controls than PSCs. In addition, the inverse functional coupling between amygdala and OFC was significantly weaker in PSCs compared to controls. Our results argue that normal emotion processing circuits are disrupted in PSCs via attenuated modulation of emotional status by external or internal indicators. At later stages, this dysfunction may increase the risk for developing recognised, HD-associated, psychiatric symptoms such as irritability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent progress in neuroscience has yielded major findings regarding brain maturation during adolescence. Unlike the body, which reaches adult size and morphology during this period, the adolescent brain is still maturing. The prefrontal cortex appears to be an important locus of maturational change subserving executive functions that may regulate emotional and motivational issues. The recent expansion of the adolescent period has increased the lag between the onset of emotional and motivational changes activated by puberty and the completion of cognitive development-the maturation of self-regulatory capacities and skills that are continuing to develop long after puberty has occurred. This "disconnect" predicts risk for a broad set of behavioral and emotional problems. Adolescence is a critical period for high-level cognitive functions such as socialization that rely on maturation of the prefrontal cortex. Intervention during the period of adolescent brain development provides opportunities and requires an interdisciplinary approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer's disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta. in the CA I and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline. The decrease in spinophilin-immunoreactivity was significantly related to both Braak neurofibrillary tangle (NFT) staging and clinical severity but not A beta deposition staging. The total number of spinophilin-immunoreactive puncta in CA I field and area 9 were significantly related to MMSE scores and predicted 23.5 and 61.9% of its variability. The relationship between total number of spinophilin-immunoreactive puncta in CA I field and MMSE scores did not persist when adjusting for Braak NFT staging. In contrast, the total number of spinophilin-immunoreactive puncta in area 9 was still significantly related to the cognitive outcome explaining an extra 9.6% of MMSE and 25.6% of the Clinical Dementia Rating scores variability. Our data suggest that neocortical dendritic spine loss is an independent parameter to consider in AD clinicopathologic correlations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression. We previously provided evidence that Bdnf expression critically rely on a potent CREB coactivator called CREB-regulated transcription coactivator 1 (CRTC1). METHODS: To further evaluate the role of CRTC1 in the brain, we generated a knockout mouse line and analyzed its behavioral and molecular phenotype. RESULTS: We found that mice lacking CRTC1 associate neurobehavioral endophenotypes related to mood disorders. Crtc1(-/-) mice exhibit impulsive aggressiveness, social withdrawal, and decreased sexual motivation, together with increased behavioral despair, anhedonia, and anxiety-related behavior in the novelty-induced hypophagia test. They also present psychomotor retardation as well as increased emotional response to stressful events. Crtc1(-/-) mice have a blunted response to the antidepressant fluoxetine in behavioral despair paradigms, whereas fluoxetine normalizes their aggressiveness and their behavioral response in the novelty-induced hypophagia test. Crtc1(-/-) mice strikingly show, in addition to a reduced dopamine and serotonin turnover in the prefrontal cortex, a concomitant decreased expression of several susceptibility genes involved in neuroplasticity, including Bdnf, its receptor TrkB, the nuclear receptors Nr4a1-3, and several other CREB-regulated genes. CONCLUSIONS: Collectively, these findings support a role for the CRTC1-CREB pathway in mood disorders etiology and behavioral response to antidepressants and identify CRTC1 as an essential coactivator of genes involved in mood regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Language processing abnormalities and executive difficulties are hallmark features of schizophrenia. The objective of this study is to assess the blood oxygenation level-dependent (BOLD) response at two different stages of the illness (i.e. comparison between adolescents and adults with schizophrenic symptoms) during a fluency task.Methods: BOLD responses during a covert verbal fluency task were compared between 11 psychotic adolescents with schizophrenic symptoms (mean age 16,9 years) and 14 adults with schizophrenia (mean age 33,4 years). fMRI data were analyzed with standard routine of spm5.Results: First, expected activation's network was found for both groups, separately. Secondly, adolescents showed greater activation in left rolandic opercule (BA 48), left angular (BA 39) and right hippocampus compared to adults. Thirdly, adults demonstrated greater activation in presupplementary motor area (BA 6) and in precentral area (BA 4) compared to adolescents.Conclusions: The adolescents seemed to recruit a verbal network (Broca and Wernicke) and memory abilities to perform a fluency task. In contrast, adults seemed to recruit more executive function abilities to perform a similar task. Despite the evolution of schizophrenia, which is known to have a deleterious influence on the prefrontal cortex development, adult patients seemed to be able to recruit such areas to perform a verbal fluency / executive function task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.