962 resultados para doping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the electronic structure of well-characterized samples of La1-xSrxFeO3 (x=0.0�0.4) by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy, bremsstrahlung isochromat (BI) spectroscopy, and Auger electron spectroscopy. We find systematic behavior in the occupied and unoccupied density of states reflecting changes in the electronic structure on hole doping via Sr substitution as well as providing estimates for different interaction strengths. The spectral features, particularly of the unoccupied states obtained from BI spectra, indicate the probable reason for the absence of an insulator-metal transition in this series. Analysis of the Auger spectra provides the estimates of the on-site effective Coulomb interaction strengths in Fe 3d and O 2p states. The parameter values for the bare charge-transfer energy ? and the Fe 3d�O 2p hybridization strength t? for LaFeO3 are obtained from an analysis of the Fe 2p core-level XPS in terms of a model many-body calculation. We discuss the character of the ground state in LaFeO3 as well as the nature of the doped hole states in La1-xSrxFeO3, based on these parameter values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We elucidate the relationship between effective mass and carrier concentration in an oxide semiconductor controlled by a double-doping mechanism. In this model oxide system, Sr1-xLaxTiO3-delta, we can tune the effective mass ranging from 6 to 20m(e) as a function of filling (carrier concentration) and the scattering mechanism, which are dependent on the chosen lanthanum-and oxygen-vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1-xLaxTiO3-delta. We show that the effective mass decreases with carrier concentration in this large-band-gap, low-mobility oxide, and this behavior is contrary to the traditional high-mobility, small-effective-mass semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ceramics, dopants offer the possibility of higher creep rates by enhancing diffusion. The present study examines the potential for high strain rate superplasticity in a TiO2 doped zirconia, by conducting creep experiments together with microstructural characterization. It is shown that both pure and doped zirconia exhibit transitions in creep behaviour from Coble diffusion creep with n similar to 1 to an interface controlled process with n similar to 2. Doping with TiO2 enhances the creep rate by over an order of magnitude. There is evidence of substantial grain boundary sliding, consistent with diffusion creep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near and Gamma and K points of the Brillouin zone are renormalized very differently by doping. Further, Gamma-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preparation and characterization of the fullerenes, C60 and C70, are described in detail, including the design of the generators fabricated locally. The characterization techniques employed are UV-visible, IR, Raman and C-13 NMR spectroscopies, scanning as well as transmission electron microscopy and mass spectrometry. The electron energy level diagram of C60 as well as the one-electron reductions of C60 and C70 leading to various anions are discussed. Electronic absorption spectra of C60- and C60(2-) are reported. Phase transitions from the plastic to the crystalline states of C60 and C70 are examined. Based on a C-13 NMR study in a mixture of nematic liquid crystals, it has been demonstrated that C60 retains its extraordinary symmetry in solution phase as well. Interaction of C60 and C70 with strong electron-donor molecules has been investigated employing cyclic voltammetry. Superconductivity of K(x)C60 has been studied by non-resonant microwave absorption; Na(x)C60 as well as K(c)C70 are shown to be non-superconducting. Doping C60 with iodine does not make it superconducting. Interaction of C60 with SbCl5 and liquid Br2 gives rise to halogenated products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium-doped lanthanum chromites, La1−xSrxCrO3, have been synthesised to investigate the effect of strontium doping on the stability and physico-chemical characteristics of the perovskite LaCrO3. Both microscopic and X-ray examinations show that the materials exist as single phase perovskite structure for all compositions up to 50 mole% strontium substitution. The materials have been further characterized by infrared and electron paramagnetic resonance spectra. These materials show a good sinterability even in air at 1773 K. Electrical conductivity of thse perovskites has been measured as a function of temperature. Electrical conductivity has been found to be a maximum at x=0.2. The observed electrical and magnetic properties are consistent with activated polaron transport as the mechanism for electrical conduction in these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 x 10(-2) Omega cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of oxides LnBaCuCoO(5) (Ln = Pr, Nd, Sm, Dy, Gd, Ho and Er) have been synthesized by ceramic method. The oxides crystallize in a tetragonal structure, isostructural to YBaCuCoO5. All the oxides in the series are semiconducting. IR spectra of these oxides show distinct absorption bands at 630 cm(-1), 550 cm(-1) and 330 cm(-1) which are assigned to E, A(2) and A(1) modes respectively. Doping of holes in these oxides, by calcium substitution in Er1-xCaxBaCuCoO5-x (up to x similar or equal to 0.3) was done but, these oxides did not show metallic behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combined mechanism involving phonon and lochon (local charged boson) induced pairing of fermions developed earlier for cuprate superconductors is used to study the variation of the oxygen isotope effect (alpha(0)) in these systems. The recently observed results for some cuprates are in agreement with the calculated trend in which (alpha(0)) tends to larger value when the critical temperature (T-c) is reduced by appropriate doping. These results support the combined phononic and electronic (lochonic) mechanism for cuprates with the latter dominating in the higher T-c regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of hydrogen-plasma passivation on the optical and electrical properties of gallium antimonide bulk single crystals is presented. Fundamental changes of the radiative recombination after hydrogenation in undoped, zinc-doped, tellurium-doped, and codoped (with Zn and Te) GaSb are reported. The results of optical measurements indicate that passivation of acceptors is more efficient than that of the donors and, in general, the passivation efficiency depends on the doping level. Passivation of deep nonradiative centers is reflected by the gain of photoluminescence intensity and decrease in deep-level transient spectroscopy peak height. Extended defects like grain boundaries and dislocations have also been found to be passivated. The thermal stability of the passivated deep level and extended defects is higher than that of the shallow level. The kinetics of thermally released hydrogen in the bulk has been studied by reverse-bias annealing experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoresistance (MR) in bulk samples of LaMnO3 has been investigated by varying the Mn4+ content from 10 to 33 per cent by chemical means, without aliovalent doping. With the increase in Mn4+ content, the structure of LaMnO3 changes first from orthorhombic to rhombohedral and then to cubic and the material becomes increasingly ferromagnetic, exhibiting a resistivity maximum akin to an insulator-metal transition at T-Peak, just below the ferromagnetic T-c. The magnitude of MR is highest in the cubic sample (with 33% Mn4+) around the T-Peak, and negligible in the non-magnetic orthorhombic sample (12% Mn4+).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All ‘undoped’ cuprates are antiferromagnetic Mott insulators. We argue that with doping they remain to be insulators including the ‘overdoped’ samples. Hence, there is no clear dividing line between non–metallic cuprates and high–temperature superconductors. Based on the generic Hamiltonian including the electron–phonon interaction and the direct Coulomb repulsion the ground state of doped cuprates is shown to be a charged 2e Bose liquid of small bipolarons. A theory of the normal state transport of copper oxides is developed. The temperature dependence of the resistivity and of the Hall effect agrees remarkably well with the experimental data in La2–xSrxCuO4 for the entire temperature regime including unusual ‘logarithmic’ low–temperature region. The violation of Kohler's rule in magnetoresistivity is explained. The resistive and thermodynamic superconducting transitions in a magnetic field are quantitatively described.