894 resultados para diurnal cycle
Resumo:
Aim: 125I-iododeoxyuridine is a potential Auger radiation therapy agent. Its incorporation in DNA of proliferating cells is enhanced by fluorodeoxyuridine. Here, we evaluated therapeutic activities of 125I-iododeoxyuridine in an optimized fluorodeoxyuridine pre-treatment inducing S-phase synchronization. Methods: After S-phase synchronization by fluorodeoxyuridine, cells were treated with 125I-iododeoxyuridine. Apoptosis analysis and S-phase synchronization were studied by flow cytometry. Cell survival was determined by colony-forming assay. Based on measured growth parameters, the number of decays per cell that induced killing was extrapolated. Results: Treatment experiments showed that 72 to 91% of synchronized cells were killed after 0.8 and 8 kBq/ml 125I-iododeoxyuridine incubation, respectively. In controls, only 8 to 38% of cells were killed by corresponding 125I-iododeoxyuridine activities alone and even increasing the activity to 80 kBq/ml gave only 42 % killing. Duplicated treatment cycles or repeated fluorodeoxyuridine pre-treatment allowed enhancing cell killing to >95 % at 8 kBq/ml 125I-iododeoxyuridine. About 50 and 160 decays per S-phase cells in controls and S-phase synchronization, respectively, were responsible for the observed cell killing at 0.8 kBq/ml radio-iododeoxyuridine. Conclusion: These data show the successful application of fluorodeoxyuridine that provided increased 125I-iododeoxyuridine Auger radiation cell killing efficacy through S-phase synchronization and high DNA incorporation of radio-iododeoxyuridine.
Resumo:
Mouse mammary tumor virus (MMTV) infects the host via mucosal surfaces and exploits the host immune system for systemic spread and chronic infection. We have tested a neutralizing rat monoclonal antibody specific for the retroviral envelope glycoprotein gp52 for its efficiency in preventing acute and chronic mucosal and systemic infection. The antibody completely inhibits the superantigen response and chronic viral infection following systemic or nasal infection. Surprisingly however, the antibody only partially inhibits the early infection of antigen-presenting cells in the draining lymph node. Despite this initially inefficient protection from infection, superantigen-specific B- and T-cell responses and systemic viral spread are abolished, leading to complete clearance of the retroviral infection and hence interruption of the viral life cycle. In conclusion, systemic neutralizing monoclonal antibodies can provide an efficient protection against chronic retroviral amplification and persistence.
Resumo:
The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental-social cues and physiological-behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time-dependent changes in renal pathology.
Resumo:
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Resumo:
Background: Copeptin (CP), a derivate from the antidiuretic hormone (ADH) precursor pre-pro-vasopressin, stochiometrically mirrors ADH secretion. CP is increasingly evaluated as a diagnostic and prognostic biomarker in different diseases. It is therefore important to recognize possible confounding factors when interpreting CP levels. In healthy regularly menstruating women, there is a small but measurable physiological variability of hormones involved in fluid regulation. ADH plasma levels have been found to be lowest at menstruation, increasing during the follicular phase with a peak at ovulation and a drop in the luteal phase. We investigated the variability of CP during the menstrual cycle (MC) and its correlation to MC hormones. Methods: In total, 15 healthy women with regular MC (from 26 to 33 days) were included in this study. Ovulation was confirmed by progesterone (prog) levels on day 21 of the MC before entering the study and during the study. Blood collection was performed on days 3, 5, 8-16, 18, 21, 24 and 27 of their MC. Serums were assayed for prog, estradiol (E2), LH, and CP. Mixed linear regression analysis for repeated measures was performed to study the changes of CP, prog, E2 and LH during the MC, and to test the correlation of CP with sex hormones during the MC. Results: Mean MC length in all subjects was 28.5±2.2 d. E2, prog, and LH exhibited characteristic changes during the MC (all P< 0.05). All cycles were ovulatory (peak prog 54±15 nmol/l). CP levels did not change significantly throughout the MC, and were not associated with changes in prog, E2 or LH-levels (all P=ns). Conclusion: CP levels remain stable during the MC and are not influenced by changes in sex hormones. This implicates that it is not necessary to consider MC phases when using CP as a biomarker in premenopausal women.
Resumo:
OBJECTIVE: To define the dynamics of antimüllerian hormone (AMH) and inhibins during the physiologic menstrual cycle. DESIGN: Longitudinal study. SETTING: University hospital. PATIENT(S): 36 young, healthy, normal weight Caucasian women without medication. INTERVENTION(S): Normal ovulatory menstrual cycles were evaluated by regular blood sampling taken every other day and periovulatory every day. MAIN OUTCOME MEASURE(S): Serum concentrations of AMH, inhibin A and B, follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, estradiol, progesterone, and free testosterone were measured in all blood samples. RESULT(S): Median AMH levels are statistically significantly higher in the late follicular compared with ovulation or the early luteal phase. There are statistically significant correlations between both AMH and FSH, and AMH and free testosterone in all cycle phases. Inhibin A increases strongly in the late follicular phase and peaks at day LH + 4. Inhibin B shows a broad midfollicular and a sharp early luteal peak, the difference being statistically significant between day LH + 4 and the earlier time points and between day LH + 2 and day LH. Although there is a negative association between inhibin A or B and the body mass index (BMI), there is no correlation between AMH and the BMI. CONCLUSION(S): Levels of AMH show a statistically significant change during the menstrual cycle and may influence the circulating gonadotropin and steroid hormone levels.
Resumo:
The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.
Resumo:
Haemoglobin (Hb) and Reticulocytes (Ret) are measured as indirect markers of doping in athletes. We studied the diurnal variation, the impact of exercise, fluid intake and ambient temperature in athletes on these parameters. Hourly venous blood samples were obtained from 36 male athletes of different disciplines (endurance (END) and non-endurance (NON-END)) over 12 h during a typical training day. Seven inactive subjects served as controls (CON). Hb and Ret were determined. A mixed model procedure was used to analyse the data. At baseline, Hb was similar for all groups, END showed lower Ret than NON-END and CON. Exercise showed a significant impact on Hb (+0.46 g/dl, p<0.001), the effect disappeared approximately 2 h after exercise. Hb decreased over the day by approximately 0.55 g/dl (p<0.01). There was no relevant effect on Ret. Fluid intake and ambient temperature had no significant effect. Hb shows significant diurnal- and exercise related variations. In an anti-doping context, most of these variations are in favour of the athlete. Blood samples taken after exercise might therefore provide reliable results and thus be used for the longitudinal monitoring of athletes if a timeframe for the re-equilibration of vascular volumes is respected.
Resumo:
24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.
Resumo:
The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.
Resumo:
Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure.
Resumo:
Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.
Resumo:
The deduced amino acid sequence of Leishmania major sw3 cDNA reveals the presence of characteristic histone H1 amino acid motifs. However, the open reading frame is of an unusually small size for histone H1 (105 amino acids) because it lacks the coding potential for the central hydrophobic globular domain of linker histones present in other eukaryotes. Here, we provide biochemical evidence that the SW3 protein is indeed a L. major nuclear histone H1, and that it is differentially expressed during the life cycle of the parasite. Due to its high lysine content, the SW3 protein can be purified to a high degree from L. major nuclear lysates with 5% perchloric acid, a histone H1 preparative method. Using an anti-SW3 antibody, this protein is detected as a 17 kDa or as a 17/19 kDa doublet in the nuclear subfraction in different L. major strains. The nuclear localization of the SW3 protein is further supported by immunofluorescence studies. During in vitro promastigote growth, both the sw3 cytoplasmic mRNA and its protein progressively accumulate within parasites from early log phase to stationary phase. Within amastigotes, the high level of H1 expression is maintained but decreases when amastigotes differentiate into promastigotes. Together, these observations suggest that the different levels of this histone H1 protein could influence the varying degrees of chromatin condensation during the life-cycle of the parasite, and provide us with tools to study this mechanism.