877 resultados para data-mining application
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
As técnicas utilizadas para avaliação da segurança estática em sistemas elétricos de potência dependem da execução de grande número de casos de fluxo de carga para diversas topologias e condições operacionais do sistema. Em ambientes de operação de tempo real, esta prática é de difícil realização, principalmente em sistemas de grande porte onde a execução de todos os casos de fluxo de carga que são necessários, exige elevado tempo e esforço computacional mesmo para os recursos atuais disponíveis. Técnicas de mineração de dados como árvore de decisão estão sendo utilizadas nos últimos anos e tem alcançado bons resultados nas aplicações de avaliação da segurança estática e dinâmica de sistemas elétricos de potência. Este trabalho apresenta uma metodologia para avaliação da segurança estática em tempo real de sistemas elétricos de potência utilizando árvore de decisão, onde a partir de simulações off-line de fluxo de carga, executadas via software Anarede (CEPEL), foi gerada uma extensa base de dados rotulada relacionada ao estado do sistema, para diversas condições operacionais. Esta base de dados foi utilizada para indução das árvores de decisão, fornecendo um modelo de predição rápida e precisa que classifica o estado do sistema (seguro ou inseguro) para aplicação em tempo real. Esta metodologia reduz o uso de computadores no ambiente on-line, uma vez que o processamento das árvores de decisão exigem apenas a verificação de algumas instruções lógicas do tipo if-then, de um número reduzido de testes numéricos nos nós binários para definição do valor do atributo que satisfaz as regras, pois estes testes são realizados em quantidade igual ao número de níveis hierárquicos da árvore de decisão, o que normalmente é reduzido. Com este processamento computacional simples, a tarefa de avaliação da segurança estática poderá ser executada em uma fração do tempo necessário para a realização pelos métodos tradicionais mais rápidos. Para validação da metodologia, foi realizado um estudo de caso baseado em um sistema elétrico real, onde para cada contingência classificada como inseguro, uma ação de controle corretivo é executada, a partir da informação da árvore de decisão sobre o atributo crítico que mais afeta a segurança. Os resultados mostraram ser a metodologia uma importante ferramenta para avaliação da segurança estática em tempo real para uso em um centro de operação do sistema.
Resumo:
A presente dissertação visa apresentar um conjunto de desenvolvimentos, aplicativos e serviços para suporte à operação em tempo real e ao controle preventivo visando garantir à segurança estática e dinâmica de sistemas elétricos de potência. A técnica de mineração de dados conhecida como árvore de decisão foi utilizada tanto para classificar o estado operacional do sistema, bem como para fornecer diretrizes à tomada de ações de controle, necessárias para evitar a degradação da tensão operativa e a instabilidade transitória. Testes preliminares foram realizados utilizando o histórico operacional do SCADA/SAGE do Centro de Operação Regional do Pará da Eletrobrás Eletronorte. Os resultados obtidos validaram completamente o conjunto (protótipo) de aplicativos e serviços, e indicam um grande potencial para a aplicação no ambiente de operação em tempo real.
Resumo:
Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.
Resumo:
Presentations sponsored by the Patent and Trademark Depository Library Association (PTDLA) at the American Library Association Annual Conference, New Orleans, June 25, 2006 Speaker #1: Nan Myers Associate Professor; Government Documents, Patents and Trademarks Librarian Wichita State University, Wichita, KS Title: Intellectual Property Roundup: Copyright, Trademarks, Trade Secrets, and Patents Abstract: This presentation provides a capsule overview of the distinctive coverage of the four types of intellectual property – What they are, why they are important, how to get them, what they cost, how long they last. Emphasis will be on what questions patrons ask most, along with the answers! Includes coverage of the mission of Patent & Trademark Depository Libraries (PTDLs) and other sources of business information outside of libraries, such as Small Business Development Centers. Speaker #2: Jan Comfort Government Information Reference Librarian Clemson University, Clemson, SC Title: Patents as a Source of Competitive Intelligence Information Abstract: Large corporations often have R&D departments, or large numbers of staff whose jobs are to monitor the activities of their competitors. This presentation will review strategies that small business owners can employ to do their own competitive intelligence analysis. The focus will be on features of the patent database that is available free of charge on the USPTO website, as well as commercial databases available at many public and academic libraries across the country. Speaker #3: Virginia Baldwin Professor; Engineering Librarian University of Nebraska-Lincoln, Lincoln, NE Title: Mining Online Patent Data for Business Information Abstract: The United States Patent and Trademark Office (USPTO) website and websites of international databases contains information about granted patents and patent applications and the technologies they represent. Statistical information about patents, their technologies, geographical information, and patenting entities are compiled and available as reports on the USPTO website. Other valuable information from these websites can be obtained using data mining techniques. This presentation will provide the keys to opening these resources and obtaining valuable data. Speaker #4: Donna Hopkins Engineering Librarian Renssalaer Polytechnic Institute, Troy, NY Title: Searching the USPTO Trademark Database for Wordmarks and Logos Abstract: This presentation provides an overview of wordmark searching in www.uspto.gov, followed by a review of the techniques of searching for non-word US trademarks using codes from the Design Search Code Manual. These codes are used in an electronic search, either on the uspto website or on CASSIS DVDs. The search is sometimes supplemented by consulting the Official Gazette. A specific example of using a section of the codes for searching is included. Similar searches on the Madrid Express database of WIPO, using the Vienna Classification, will also be briefly described.
Resumo:
In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity