854 resultados para data gathering algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to group temporal profiles of 10-day composites NDVI product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, potentially useful and understandable patterns. Therefore, it was used the methods for clusters generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the WEKA software package. Clusters were created based on the average temporal profiles of NDVI of the 277 municipalities with high soybean production in the state and the best results were found with the K-Means algorithm, grouping the municipalities into six clusters, considering the period from the beginning of October until the end of March, which is equivalent to the crop vegetative cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans and were mostly under the soybean belt in the state of Paraná, which shows good results that were obtained with the proposed methodology as for identification of homogeneous areas. These results will be useful for the creation of regional soybean "masks" to estimate the planted area for this crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work present the application of a computer package for generating of projection data for neutron computerized tomography, and in second part, discusses an application of neutron tomography, using the projection data obtained by Monte Carlo technique, for the detection and localization of light materials such as those containing hydrogen, concealed by heavy materials such as iron and lead. For tomographic reconstructions of the samples simulated use was made of only six equal projection angles distributed between 0º and 180º, with reconstruction making use of an algorithm (ARIEM), based on the principle of maximum entropy. With the neutron tomography it was possible to detect and locate polyethylene and water hidden by lead and iron (with 1cm-thick). Thus, it is demonstrated that thermal neutrons tomography is a viable test method which can provide important interior information about test components, so, extremely useful in routine industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this master’s thesis is to provide a real life example of how marketing research data is used by different functions in the NPD process. In order to achieve this goal, a case study in a company was implemented where gathering, analysis, distribution and synthesis of marketing research data in NPD were studied. The main research question was formulated as follows: How is marketing research data integrated and used by different company functions in the NPD process? The theory part of the master’s thesis was focused on the discussion of the marketing function role in NPD, use of marketing research particularly in the food industry, as well as issues related to the marketing/R&D interface during the NPD process. The empirical part of the master’s thesis was based on qualitative explanatory case study research. Individual in-depth interviews with company representatives, company documents and online research were used for data collection and analyzed through triangulation method. The empirical findings advocate that the most important marketing data sources at the concept generation stage of NPD are: global trends monitoring, retailing audit and consumers insights. These data sets are crucial for establishing the potential of the product on the market and defining the desired features for the new product to be developed. The findings also suggest the example of successful crossfunctional communication during the NPD process with formal and informal communication patterns. General managerial recommendations are given on the integration in NPD of a strategy, process, continuous improvement, and motivated cross-functional product development teams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.