961 resultados para cytochrome P450


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a k(cat) (2.46 +/- 0.09 min(-1)) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min(-1)) and P450 2C19 (0.054 +/- 0.002 min(-1)) and K-m (45 +/- 5 mu M) slightly greater than those of P450 2C9 (12 +/- 4 mu M) and P450 2C19 (29 +/- 4 mu M). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim The aim of this systematic review was to assess the quality and outcomes of clinical trials investigating the effect of St John's wort extracts on the metabolism of drugs by CYP3A. Methods Prospective clinical trials assessing the effect of St John's wort (SJW) extracts on metabolism by CYP3A were identified through computer-based searches (from their inception to May 2005) of Medline, Cinahl, PsycINFO, AMED, Current Contents and Embase, hand-searches of bibliographies of relevant papers and consultation with manufacturers and researchers in the field. Two reviewers selected trials for inclusion, independently extracted data and recorded details on study design. Results Thirty-one studies met the eligibility criteria. More than two-thirds of the studies employed a before-and-after design, less than one-third of the studies used a crossover design, and only three studies were double-blind and placebo controlled. In 12 studies the SJW extract had been assayed, and 14 studies stated the specific SJW extract used. Results from 26 studies, including all of the 19 studies that used high-dose hyperforin extracts (> 10 mg day(-1)), had outcomes consistent with CYP3A induction. The three studies using low-dose hyperforin extracts (< 4 mg day(-1)) demonstrated no significant effect on CYP3A. Conclusion There is reasonable evidence to suggest that high-dose hyperforin SJW extracts induce CYP3A. More studies are required to determine whether decreased CYP3A induction occurs after low-dose hyperforin extracts. Future studies should adopt study designs with a control phase or control group, identify the specific SJW extract employed and provide quantitative analyses of key constituents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the objectives of the molecular biological study of glaucoma is to establish how the disease develops as a result of the production of aberrant gene products. Many of the genes associated with glaucoma code for proteins which are likely to be directly or indirectly involved in the development and/or function of cells within the trabecular meshwork. The identification of specific defects in these genes is likely to lead to a better understanding of the mechanisms involved in PCG and glaucoma in general and to the development of alternative therapies to surgery. The CYP1B1 gene in particular, which is a linked to congenital glaucoma, and is expressed in the trabecular meshwork, codes for a member of the cytochrome P450 group of proteins. These iron binding proteins constitute a family of enzymes involved in the processes of xenobiotic metabolism, growth, and development. The discovery of the CYP1B1 gene in PCG emphases the importance of abnormalities in the molecular structure of proteins expressed in cells of the trabecular network as a cause of PCG. The identification of specific genetic defects leads to the possibility of more widespread screening for PCG especially in affected families and hence, the possibility of the identification of asymptomatic carriers of the disease. Early identification of 'at risk' parents may then enable earlier detection of PCG and intervention in the infant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term "pharmacogenetics" has been defined as the scientific study of inherited factors that affect the human drug response. Many pharmacogenetie studies have been published since 1995 and have focussed on the principal enzyme family involved in drug metabolism, the cytochrome P450 family, particularly cytochrome P4502C9 and 2C19. In order to investigate the pharmacogenetic aspect of pharmacotherapy, the relevant studies describing the association of pharmacogenetic factor(s) in drug responses must be retrieved from existing literature using a systematic review approach. In addition, the estimation of variant allele prevalence for the gene under study between different ethnic populations is important for pharmacogenetic studies. In this thesis, the prevalence of CYP2C9/2C19 alleles between different ethnicities has been estimated through meta-analysis and the population genetic principle. The clinical outcome of CYP2C9/2C19 allelic variation on the pharmacotherapy of epilepsy has been investigated; although many new antiepileptic drugs have been launched into the market, carbamazepine, phenobarbital and phenytoin are still the major agents in the pharmacotherapy of epilepsy. Therefore, phenytoin was chosen as a model AED and the effect of CYP2C9/2C19 genetic polymorphism on phenytoin metabolism was further examined.An estimation of the allele prevalence was undertaken for three CYP2C9/2C19 alleles respectively using a meta-analysis of studies that fit the Hardy-Weinberg equilibrium. The prevalence of CYP2C9*1 is approximately 81%, 96%, 97% and 94% in Caucasian, Chinese, Japanese, African populations respectively; the pooled prevalence of CYP2C19*1 is about 86%, 57%, 58% and 85% in these ethnic populations respectively. However, the studies of association between CYP2C9/2C19 polymorphism and phenytoin metabolism failed to achieve any qualitative or quantitative conclusion. Therefore, mephenytoin metabolism was examined as a probe drug for association between CYP2C19 polymorphism and mephenytoin metabolic ratio. Similarly, analysis of association between CYP2C9 polymorphism and warfarin dose requirement was undertaken.It was confirmed that subjects carrying two mutated CYP2C19 alleles have higher S/R mephenytoin ratio due to deficient CYP2C19 enzyme activity. The studies of warfarin and CYP2C9 polymorphism did not provide a conclusive result due to poor comparability between studies.The genetic polymorphism of drug metabolism enzymes has been studied extensively, however other genetic factors, such as multiple drug resistance genes (MDR) and genes encoding ion channels, which may contribute to variability in function of drug transporters and targets, require more attention in future pharmacogenetic studies of antiepileptic drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statins are agents widely used to lower LDL-cholesterol (LDL-C) in primary and secondary prevention of coronary heart disease. The five statins available in the UK (simvastatin, pravastatin, fluvastatin, atorvastatin and rosuvastatin) differ in many of their pharmacologic properties. In addition to lowering LDL-C, statins also increase HDL-cholesterol (HDL-C) moderately. There have been rare reports of significant HDL-C decreases in patients commenced on fibrates and when thiazolidinediones are added to fibrates. This is known as a 'paradoxical HDL-C decrease' as both groups of agents usually increase HDL-C. This phenomenon has never been clearly documented following statin therapy. We now describe a patient with type 2 diabetes who showed this paradoxical fall in HDL-C (baseline HDL-C: 1.8 mmol/L; on simvastatin 40 mg HDL-C 0.6 mmol/L; on atorvastatin 20 mg HDL-C 0.9 mmol/L) with a similar decrease in apolipoprotein A1. No similar decrease was observed with pravastatin and rosuvastatin therapy. This phenomenon appeared to be associated with statin treatment and not a statin/fibrate combination. Our patient clearly demonstrated a paradoxical HDL-C fall with simvastatin and atorvastatin, but not pravastatin or rosuvastatin. Simvastatin and atorvastatin share many pharmacokinetic properties such as lipophilicity while pravastatin and rosuvastatin are relatively hydrophilic and are not metabolized by cytochrome P450 3A4. However, these characteristics do not explain the dramatic reductions in HDL-C observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACKNOWLEDGMENTS The immunohistochemistry was performed with the support of the Grampian Biorepository. GRANT SUPPORT Rebecca Swan was supported by the Jean Shanks Foundation. This study was supported by funding from Friends of Anchor and the Encompass kick start and SMART:Scotland award schemes of Scottish Enterprise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.