773 resultados para cracking
Cultural innovation and transmission of tool use in wild chimpanzees:evidence from field experiments
Resumo:
Animal Cognition, V.6, pp. 213-223
Resumo:
Relatório de estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
No Estádio do Dragão existem doze juntas de dilatação localizadas simetricamente, que separam o estádio em doze corpos independentes, com o objetivo de minimizar a fendilhação provocada pelas movimentações da estrutura resultantes da solicitação de ações diretas e, principalmente, indiretas nessa mesma estrutura. Neste relatório explicar-se-á a importância, causas e objetivos que levam à necessidade de utilização destas juntas de dilatação em geral nas edificações, e no caso particular do estádio referido. Este elemento estrutural é considerado pela empresa responsável pela manutenção do Estádio do Dragão como a causa de um dos principais problemas recorrentes no estádio que necessitam de uma exigente atenção. Esta consideração deve-se ao fato das intervenções nas juntas de dilatação terem um custo de manutenção bastante oneroso e também pelo frequente aparecimento de novas patologias associadas a este elemento, tais como infiltrações de água, que necessitam de uma reparação urgente. Portanto, no sentido de resolver estas patologias decorrentes do mau funcionamento dos sistemas de juntas existentes no Estádio do Dragão, foi proposto pela PortoEstádio a elaboração de procedimentos de um plano de manutenção das juntas de dilatação que permitisse planear as intervenções e mitigar o aparecimento dessas patologias, com o objetivo principal de minimizar os custos inerentes à manutenção das juntas de dilatação. Estes procedimentos solicitados e demais elementos complementares são apresentados no presente trabalho, com a classificação dos sistemas de juntas do Estádio do Dragão, identificação das principais patologias nos diversos sistemas de juntas, escolha de novos sistemas para substituição dos existentes no estádio e finalmente, a criação de uma calendarização de intervenções nas juntas para a implementação de um plano de manutenção preventiva neste elemento de grande importância estrutural.
Resumo:
Actualmente e cada vez mais, são concebidos e utilizados programas de cálculo automático de Engenharia na realização de projectos de edifícios, que proporcionam aos engenheiros uma possibilidade avançada e rápida de execução, simulação e análise de edifícios para estruturas complexas e de elevada dimensão. Contudo, será necessário que os resultados deverão ser fiáveis de modo a não existirem consequências no comportamento real da estrutura a longo prazo. O presente relatório de estágio, refere-se à verificação aos estados limites de utilização (tensões, fendilhação e deformação) segundo o Eurocódigo 2, de uma estrutura porticada em betão armado, nomeadamente de um pórtico central pertencente a essa mesma estrutura recorrendo ao programa de cálculo automático da Autodesk o Robot Structural Analysis Professional 2014. O objectivo principal do presente trabalho consiste na comparação de resultados referente aos estados limites últimos e de utilização, pelos diferentes módulos de dimensionamento Required e Provided Reinforcement presentes no programa Robot. É destacado no final do relatório, considerando uma disposição de armadura optada analiticamente para o pórtico, uma análise comparativa de resultados referente aos estados limites de utilização entre o comando Typical Reinforcement do módulo Provided Reinforcement e por expressões analíticas. Refere-se contudo que, o procedimento do método analítico teve como base de cálculo uma aplicação desenvolvida para a verificação de elementos de betão armado aos estados limites de utilização segundo o Eurocódigo 2, com o nome de XD-Conserv tendo sido também comparado os resultados finais do mesmo.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
Iron and mixed iron aluminium pillared montmorillonites prepared by partial hydrolysis method was subjected to room temperature exchange with transition metals of the first series. The materials exhibit good structural as well as thermal stability. Exchanged metals were found to be present inside the porous network, in the environs of the pillars. Mixed pillaring resulted in the intercalation of Al 13 like polymers in which Al is partially substituted by Fe. The acidic structure was followed by temperature programmed desorption of ammonia and cumene cracking test reaction. Weak and medium sites overshadow the strong sites in all systems. However, exchange with metals increases the number of strong sites. The prepared materials are efficient catalysts for gas phase MTBE synthesis. The catalytic activity can be well correlated with the total amount of weak and medium acid sites.
Resumo:
Iron and mixed iron aluminium pillared montrnorillonites prepared by partial hydrolysis method were subjected to room temperature exchange with transition metals of the first series. The resulting materials were characterised by different spectroscopic techniques and surface area measurements. About 1-3% transition metals were incorporated into the porous network. The structural stability of the porous network was not affected by exchange. XRD and AI NMR spectroscopy evidenced the presence of iron substituted Al13 like polymers in FeAl pillared systems. Acidity and basicity benefited much as a result of metal exchange. Acidity and basicity were quantified by model reactions, viz., cumene cracking and cyclohexanol decomposition respectively. The presence of basic sites in otherwise acidic pillared clays, though diminutive in amount can be of much importance in acid base catalysed reactions.
Resumo:
A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed T-beams having a shear span to depth ratio of 2.65 and 1.59 that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, bond-slip of longitudinal reinforcement, postcracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging action of steel fibers at crack interface. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcement such as deformed bars, prestressing wires and steel fibers have been modeled discretely using ‘LINK8’ – 3D spar element. The slip between the reinforcement (rebars, fibers) and the concrete has been modeled using a ‘COMBIN39’- nonlinear spring element connecting the nodes of the ‘LINK8’ element representing the reinforcement and nodes of the ‘SOLID65’ elements representing the concrete. The ‘ANSYS’ model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.
Resumo:
Urolithiasis is identified to be a major urological disorder affecting people all over the world irrespective of their age, sex and race. Urinary stone samples resected from the urinary bladders of two patients belonging to tropical region, Kollam District of Kerala State, India are investigated by using XRD,SEM, EDAX, TGA, DSC and FTIR to understand its chemical structure. Uric acid shows exothermic peak around 432°C is due to the decomposition with the evolution of CO and cracking of the remaining products. Results of analytical studies reveal that samples under investigation consist mainly in uric acid and hydrated uric acid. Hydrogen bonding exists in hydrated uric acid samples
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping