941 resultados para correlation interferometer
Resumo:
In situ IR measurements for CO adsorption and preferential CO oxidation in H-2-rich gases over Ag/SiO2 catalysts are presented in this paper. CO adsorbed on the Ag/SiO2 pretreated with oxygen shows a band centered around 2169 cm(-1), which is assigned to CO linearly bonded to Ag+ sites. The amount of adsorbed CO on the silver particles ( manifested by an IR band at 2169 cm(-1)) depends strongly on the CO partial pressure and the temperature. The steady-state coverage on the Ag surface is shown to be significantly below saturation, and the oxidation of CO with surface oxygen species is probably via a non-competitive Langmuir Hinshelwood mechanism on the silver catalyst which occurs in the high-rate branch on a surface covered with CO below saturation. A low reactant concentration on the Ag surface indicates that the reaction order with respect to Pco is positive, and the selectivity towards CO2 decreases with the decrease of Pco. On the other hand, the decrease of the selectivity with the reaction temperature also reflects the higher apparent activation energy for H-2 oxidation than that for CO oxidation.
Resumo:
The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper outlines a novel information sharing method using Binary Decision Diagrams (BBDs). It is inspired by the work of Al-Shaer and Hamed, who applied BDDs into the modelling of network firewalls. This is applied into an information sharing policy system which optimizes the search of redundancy, shadowing, generalisation and correlation within information sharing rules.
Resumo:
This paper defines a structured methodology which is based on the foundational work of Al-Shaer et al. in [1] and that of Hamed and Al-Shaer in [2]. It defines a methodology for the declaration of policy field elements, through to the syntax, ontology and functional verification stages. In their works of [1] and [2] the authors concentrated on developing formal definitions of possible anomalies between rules in a network firewall rule set. Their work is considered as the foundation for further works on anomaly detection, including those of Fitzgerald et al. [3], Chen et al. [4], Hu et al. [5], among others. This paper extends this work by applying the methods to information sharing policies, and outlines the evaluation related to these.
Resumo:
Poolton, Nigel; Hamilton, B.; Evans, D.A., (2005) 'Synchrotron-laser pump-probe luminescence spectroscopy: Correlation of electronic defect states with x-ray absorption in wide-gap solids', Journal of Physics D: Applied Physics 38 pp.1478-1484 RAE2008
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
Resumo:
Overexpression and amplification of the HER-2 oncogene in patients with breast cancer has correlated with early onset of metastasis, resistance to hormonal therapy and some forms of chemotherapy, and shortened survival. Therefore, evaluation of this putative prognostic or predictive factor seems critical. Because different antibodies are used for the detection of the 185-kd HER-2 oncoprotein, we studied the sensitivity of 3 frequently used antibodies. Immunohistochemistry results were correlated with gene amplification level as assessed by fluorescence in situ hybridization. Protein overexpression was found in 17.2% and 12.5% of cases using antibodies against the external (TAB250) and internal (CB11) domains of the protein, respectively, and in 38.0% of cases using a rabbit polyclonal antibody. Fluorescence in situ hybridization was successful in all 160 tumors, and amplification was found in 37 tumors (23.1%). The monoclonal antibody TAB250 had the lowest misclassification rate, 9.6% (sensitivity, 67%; specificity, 97.5%).
Resumo:
In a stochastic environment, long-term fitness can be influenced by variation, covariation, and serial correlation in vital rates (survival and fertility). Yet no study of an animal population has parsed the contributions of these three aspects of variability to long-term fitness. We do so using a unique database that includes complete life-history information for wild-living individuals of seven primate species that have been the subjects of long-term (22-45 years) behavioral studies. Overall, the estimated levels of vital rate variation had only minor effects on long-term fitness, and the effects of vital rate covariation and serial correlation were even weaker. To explore why, we compared estimated variances of adult survival in primates with values for other vertebrates in the literature and found that adult survival is significantly less variable in primates than it is in the other vertebrates. Finally, we tested the prediction that adult survival, because it more strongly influences fitness in a constant environment, will be less variable than newborn survival, and we found only mixed support for the prediction. Our results suggest that wild primates may be buffered against detrimental fitness effects of environmental stochasticity by their highly developed cognitive abilities, social networks, and broad, flexible diets.
Resumo:
Antibodies specific for the beta(1)-adrenergic receptor are found in patients with chronic heart failure of various etiologies. From work presented in this issue of the JCI, we can now infer that these antibodies actually contribute to the pathogenesis of chronic heart failure. This commentary discusses mechanisms by which these antibodies may engender cardiomyopathy.
Resumo:
Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.
Resumo:
The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.
Resumo:
Photon correlation spectroscopy (PCS) is a light-scattering technique for particle size diagnosis. It has been used mainly in the investigation of hydrosol particles since it is based on the measurement of the correlation function of the light scattered from the Brownian motion of suspended particles. Recently this technique also proved useful for studying soot particles in flames and similar aerosol systems. In the case of a polydispersed system the problem of recovering the particle size distribution can be reduced to the problem of inverting the Laplace transform. In this paper we review several methods introduced by the authors for the solution of this problem. We present some numerical results and we discuss the resolution limits characterizing the reconstruction of the size distributions. © 1989.
Resumo:
info:eu-repo/semantics/published
Resumo:
Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed. © 2002 Optical Society of America.
Resumo:
Soldering technologies continue to evolve to meet the demands of the continuous miniaturisation of electronic products, particularly in the area of solder paste formulations used in the reflow soldering of surface mount devices. Stencil printing continues to be a leading process used for the deposition of solder paste onto printed circuit boards (PCBs) in the volume production of electronic assemblies, despite problems in achieving a consistent print quality at an ultra-fine pitch. In order to eliminate these defects a good understanding of the processes involved in printing is important. Computational simulations may complement experimental print trials and paste characterisation studies, and provide an extra dimension to the understanding of the process. The characteristics and flow properties of solder pastes depend primarily on their chemical and physical composition and good material property data is essential for meaningful results to be obtained by computational simulation.This paper describes paste characterisation and computational simulation studies that have been undertaken through the collaboration of the School of Aeronautical, Mechanical and Manufacturing Engineering at Salford University and the Centre for Numerical Modelling and Process Analysis at the University of Greenwich. The rheological profile of two different paste formulations (lead and lead-free) for sub 100 micron flip-chip devices are tested and applied to computational simulations of their flow behaviour during the printing process.