921 resultados para confirming
Resumo:
We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops
Resumo:
Access-related bacteremia is an important cause of morbidity in chronic hemodialysis patients. The incidence of bacteremia is higher in patients dialyzing through a tunneled central venous catheter (TCVC) compared with an arteriovenous fistula (AVF). Our aim was to explore if this is explained by patient comorbidity. Two groups of chronic hemodialysis outpatients were compared: all patients who dialyzed through a TCVC at any time during 2003 and were fit enough to subsequently have a functioning AVF or renal transplant even if it was after 2003 (Group 1; n=93); and all patients who dialyzed through a TCVC in 2003 and were not fit enough to have a functioning AVF or renal transplant (Group 2; n=119). Episodes of bacteremia (n=71) were identified and those not related to access were excluded. Patients in Group 1 were younger than Group 2 (57.5 years vs. 64.8 years; P=0.001). The incidences of bacteremia in Groups 1 and 2 were, respectively, 0.31 and 0.44 episodes per 1000 patient days while dialyzing through an AVF (P=0.77), and 2.21 and 2.27 per 1000 days while dialyzing through a TCVC (P=0.91). The 3-year actual survival from January 1, 2003 to January 1, 2006 was significantly higher in Group 1 than in Group 2 (80.6% vs. 26.1%; P<0.0001) confirming the higher comorbidity of the patients in Group 2. Patients dialyzing through a TCVC (compared with an AVF) have a significantly higher risk of access-related bacteremia, irrespective of comorbidity.
Resumo:
Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.
Resumo:
BACKGROUND: LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.
RESULTS: We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the DeltaluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the DeltaluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the DeltaluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the DeltaluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the DeltaluxSHp mutant restored flagellar gene transcription, and the number and length of flagella.
CONCLUSIONS: Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2.
Resumo:
We have performed ab initio density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on Ru(0001). Several reaction pathways and transition states are identified. A much higher reaction barrier compared to that on Pt(111) is determined, confirming that the Ru is very inactive for CO oxidation under UHV conditions. The origin of the reaction barrier was analyzed. It is found that in the transition state the chemisorbed O atom sits in an unfavorable bonding site and a significant competition for bonding with the same substrate atoms occurs between the CO and the chemisorbed O, resulting in the high barrier. Ab initio molecular dynamics calculations show that the activation of the chemisorbed O atom from the initial hcp hollow site (the most stable site) to the bridge site is the crucial step for the reaction. The CO oxidation on Ru(0001) via the Eley-Rideal mechanism has also been investigated. A comparison with previous theoretical work has been made. (C) 2000 American Institute of Physics. [S0021-9606(00)31223-5].
Resumo:
Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.
Resumo:
We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.
Resumo:
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN 1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher 25 with a peak-to-peak amplitude of ~ 12 km s-1 on a time-scale of about 6 d, confirming the tentative detection of similar variations by Hendry et al. From consideration of the amplitude and time-scale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.
Resumo:
We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of lowluminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km s-1 is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small (≤10-2 M⊙). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M⊙.
Resumo:
Here the mechanism of arsenite transport into paddy rice (Oryza sativa) roots, uptake of which is described by Michaelis-Menten kinetics, is reported. A recent study on yeast (Saccharomyces cerevisiae) showed that undissociated arsenite (its pKa is 9.2) was transported across the plasma membrane via a glycerol transporting channel. To investigate whether the same mechanism of transport was involved for rice, competitive studies with glycerol, which is transported into cells via aquaporins, were performed. Glycerol competed with arsenite for transport in a dose-dependent manner, indicating that arsenite and glycerol uptake mechanisms were the same. Arsenate transport was unaffected by glycerol, confirming that arsenate and arsenite are taken up into cells by different mechanisms. Antimonite, an arsenite analogue that is transported into S. cerevisiae cells by aquaporins, also competed with arsenite transport in a dose-dependent manner, providing further evidence that arsenite is transported into rice roots via glycerol transporting channels. Mercury (Hg2+) inhibited both arsenite and arsenate uptake, suggesting that inhibition of influx was due to general cellular stress rather than the specific action of Hg2+ on aquaporins. Arsenite uptake by pea (Pisum sativum) and wheat (Triticum aestivum) was also described by Michaelis-Menten kinetics.
Resumo:
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.
Resumo:
Animal models of bone marrow transplantation (BMT) allow evaluation of new experimental treatment strategies. One potential strategy involves the treatment of donor marrow with ultra-violet B light to allow transplantation across histocompatibility boundaries without an increase in graft rejection or graft-versus-host disease. A major requirement for a new experimental protocol, particularly if it involves manipulation of the donor marrow, is that the manipulated marrow gives rise to long-term multilineage engraftment. DNA based methodologies are now routinely used by many centres to evaluate engraftment and degree of chimaerism post-BMT in humans. We report the adaptation of this methodology to the serial study of engraftment in rodents. Conditions have been defined which allow analysis of serial tail vein samples using PCR of short tandem repeat sequences (STR-PCR). These markers have been used to evaluate the contribution of ultraviolet B treated marrow to engraftment following BMT in rodents without compromising the health of the animals under study. Chimaerism data from sequential tail vein samples and bone marrow from selected sacrificed animals showed excellent correlation, thus confirming the validity of this approach in analysing haemopoietic tissue. Thus the use of this assay may facilitate experimental studies in animal BMT.
Resumo:
Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV) several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question, and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. Additionally, endo-lysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable over-expression of p62 significantly suppressed DENV replication suggesting a novel role for p62 as viral restriction factor. Overall our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an anti-viral role, which is countered by DENV.
IMPORTANCE: Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we employed high-content, imaging-based flow cytometry to quantify autophagic flux and endo-lysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endo-lysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a pro- to an antiviral cellular process, which is counteracted by the virus.
Resumo:
Androgen and androgen receptors (AR) play critical roles in the proliferation of prostate cancer through transcriptional regulation of target genes. Here, we found that androgens upregulated the expression of dynamin-related protein 1 (Drp1), which is involved in the induction of mitochondrial fission, a common event in mitosis and apoptosis. Clinical tissue samples and various prostate cancer cell lines revealed a positive correlation between Drp1 and AR levels. Treatment of androgen-sensitive cells with an AR agonist, R1881, and antagonist, bicalutamide, showed that Drp1 is transcriptionally regulated by androgens, as confirmed by an AR ChIP-seq assay. Live imaging experiments using pAcGFP1-Mito stably transfected LNCaP (mito-green) cells revealed that androgen did not induce significant mitochondrial fission by itself, although Drp1 was upregulated. However, when treated with CGP37157 (CGP), an inhibitor of mitochondrial Ca²⁺ efflux, these cells exhibited mitochondrial fission, which was further enhanced by pretreatment with R1881, suggesting that androgen-induced Drp1 expression facilitated CGP-induced mitochondrial fission. This enhanced mitochondrial fission was correlated with increased apoptosis. Transfection with dominant-negative (DN-Drp1, K38A) rescued cells from increased apoptosis, confirming the role of androgen-induced Drp1 in the observed apoptosis with combination treatment. Furthermore, we found that CGP reduced the expression of Mfn1, a protein that promotes mitochondrial fusion, a process which opposes fission. We suggest that androgen-increased Drp1 enhanced mitochondrial fission leading to apoptosis. The present study shows a novel role for androgens in the regulation of mitochondrial morphology that could potentially be utilized in prostate cancer therapy.
Resumo:
Taking in recent advances in neuroscience and digital technology, Gander and Garland assess the state of the inter-arts in America and the Western world, exploring and questioning the primacy of affect in an increasingly hypertextual everyday environment. In this analysis they signal a move beyond W. J. T. Mitchell’s coinage of the ‘imagetext’ to an approach that centres the reader-viewer in a recognition, after John Dewey, of ‘art as experience’. New thinking in cognitive and computer sciences about the relationship between the body and the mind challenges any established definitions of ‘embodiment’, ‘materiality’, ‘virtuality’ and even ‘intelligence, they argue, whilst ‘Extended Mind Theory’, they note, marries our cognitive processes with the material forms with which we engage, confirming and complicating Marshall McLuhan’s insight, decades ago, that ‘all media are “extensions of man”’. In this chapter, Gander and Garland open paths and suggest directions into understandings and critical interpretations of new and emerging imagetext worlds and experiences.