905 resultados para computer-aided qualitative data analysis software
Resumo:
This article explains first, the reasons why a knowledge of statistics is necessary and describes the role that statistics plays in an experimental investigation. Second, the normal distribution is introduced which describes the natural variability shown by many measurements in optometry and vision sciences. Third, the application of the normal distribution to some common statistical problems including how to determine whether an individual observation is a typical member of a population and how to determine the confidence interval for a sample mean is described.
Resumo:
In some studies, the data are not measurements but comprise counts or frequencies of particular events. In such cases, an investigator may be interested in whether one specific event happens more frequently than another or whether an event occurs with a frequency predicted by a scientific model.
Resumo:
In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.
Resumo:
In the last few years, there has been considerable interest in using saturated magnetic objective lenses in high resolution electron microscopes. Such lenses, in present commercial electron microscopes, are energized either by conventional or superconducting coils. Very little work, however, has been reported on the use of conventional coils in saturated magnetic electron lenses. The present investigation has been concerned with the design of high flux density saturated objective lenses of both single and double polepiece types which may be energized by conventional coils and in some cases by superconducting coils. Such coils have the advantage of being small and capable of carrying high current densities. The present work has been carried out with the aid of several computer programs based on the finite element method. The effect of the shape and position of the energizing coil on the electron optical parameter has been investigated. Electron optical properties such as chromatic and spherical aberration have been studies in detail for saturated single and double polepiece lenses. Several high flux density coils of different shapes have been investigated. The choice of the most favourable coil shape and position subject to the operational requirements, has been studied in some detail. The focal properties of such optimised lenses have been computed and compared.
Resumo:
Advances in both computer technology and the necessary mathematical models capable of capturing the geometry of arbitarily shaped objects has led to the development in this thesis of a surface generation package called 'IBSCURF' aimed at providing a more economically viable solution to free-form surface manufacture. A suit of computer programs written in FORTRAN 77 has been developed to provide computer aids for every aspect of work in designing and machining free-form surfaces. A vector-valued parametric method was used for shape description and a lofting technique employed for the construction of the surface. The development of the package 'IBSCURF' consists of two phases. The first deals with CAD. The design process commences in defining the cross-sections which are represented by uniform B-spline curves as approximations to give polygons. The order of the curve and the position and number of the polygon vertices can be used as parameters for the modification to achieve the required curves. When the definitions of the sectional curves is complete, the surface is interpolated over them by cubic cardinal splines. To use the CAD function of the package to design a mould for a plastic handle, a mathematical model was developed. To facilitate the integration of design and machining using the mathematical representation of the surface, the second phase of the package is concerned with CAM which enables the generation of tool offset positions for ball-nosed cutters and a general post-processor has been developed which automatically generates NC tape programs for any CNC milling machine. The two phases of these programs have been successfully implemented, as a CAD/CAM package for free-form surfaces on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of this package has been beneficial in all aspects of design and machining of free form surfaces.
Resumo:
As systems for computer-aided-design and production of mechanical parts have developed, there has arisen a need for techniques for the comprehensive description of the desired part, including its 3-D shape. The creation and manipulation of shapes is generally known as geometric modelling. It is desirable that links be established between geometric modellers and machining programs. Currently, unbounded APT and some bounded geometry systems are being widely used in manufacturing industry for machining operations such as: milling, drilling, boring and turning, applied mainly to engineering parts. APT systems, however, are presently only linked to wire-frame drafting systems. The combination of a geometric modeller and APT will provide a powerful manufacturing system for industry from the initial design right through part manufacture using NC machines. This thesis describes a recently developed interface (ROMAPT) between a bounded geometry modeller (ROMULUS) and an unbounded NC processor (APT). A new set of theoretical functions and practical algorithms for the computer aided manufacturing of 3D solid geometric model has been investigated. This work has led to the development of a sophisticated computer program, ROMAPT, which provides a new link between CAD (in form of a goemetric modeller ROMULUS) and CAM (in form of the APT NC system). ROMAPT has been used to machine some engineering prototypes successfully both in soft foam material and aluminium. It has been demonstrated above that the theory and algorithms developed by the author for the development of computer aided manufacturing of 3D solid modelling are both valid and applicable. ROMAPT allows the full potential of a solid geometric modeller (ROMULUS) to be further exploited for NC applications without requiring major investment in new NC processor. ROMAPT supports output in APT-AC, APT4 and the CAM-I SSRI NC languages.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The work presented in this thesis falls into three main categories: The design and synthesis of potential anti-tuberculosis drugs targeting a mycobacterial esterase and the enzyme dUTPase; synthesis and anti-microbial SAR studies on a set of carboxamidrazones; synthesis and anti-microbial SAR studies on a set of thiosem icarbazones.
Resumo:
Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.