971 resultados para complex polymer
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual. With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to signifi cant changes in the forms of mathematical and scientifi c thinking required beyond the classroom. Modelling, in its various forms, can develop and broaden students’ mathematical and scientific thinking beyond the standard curriculum. This chapter first considers future competencies in the mathematical sciences within an increasingly complex world. Consideration is then given to interdisciplinary problem solving and models and modelling, as one means of addressing these competencies. Illustrative case studies involving complex, interdisciplinary modelling activities in Years 1 and 7 are presented.
Resumo:
Australia, internationally, is known as a beach loving country, particularly in popular culture. The beach did not figure significantly in academic discussion before the 1980s when Fiske, Hodge, and Turner (1987, 54) researched the beach as a space of myth, seeing it as an integral part of the modern Australian identity. One common myth in Australia is that the beach is an equaliser, a place of multiple ethnicities, shapes, sizes, and genders (Dutton, 1985). I agree that the beach remains a significant aspect of Australian identity; however, limiting its meaning to a mythic space contributing to a homogenous national identity is not adequate. This paper will explore how Australian texts comment on or challenge the myth of the beach as an egalitarian space. I argue that recent Australian texts show a more complex, layered representation of this concept; and that the beach also in this respect can no longer be understood as a myth transcending difference.
Resumo:
Sustainability is a key driver for decisions in the management and future development of industries. The World Commission on Environment and Development (WCED, 1987) outlined imperatives which need to be met for environmental, economic and social sustainability. Development of strategies for measuring and improving sustainability in and across these domains, however, has been hindered by intense debate between advocates for one approach fearing that efforts by those who advocate for another could have unintended adverse impacts. Studies attempting to compare the sustainability performance of countries and industries have also found ratings of performance quite variable depending on the sustainability indices used. Quantifying and comparing the sustainability of industries across the triple bottom line of economy, environment and social impact continues to be problematic. Using the Australian dairy industry as a case study, a Sustainability Scorecard, developed as a Bayesian network model, is proposed as an adaptable tool to enable informed assessment, dialogue and negotiation of strategies at a global level as well as being suitable for developing local solutions.
Resumo:
Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.
Resumo:
Background The size of the carrier influences the aerosolization of drug from a dry powder inhaler (DPI) formulation. Currently, lactose monohydrate particles in a variety of sizes are preferably used in carrier based DPI formulations of various drugs; however, contradictory reports exist regarding the effect of the size of the carrier on the dispersion of drug. In this study we examined the influence of the intrinsic particle size of the polymeric carrier on the aerosolization of a model drug salbutamol sulphate (SS). Methods Four different sizes (20–150 lm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS particles from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were by laser diffraction and SEM, respectively. Results The FPF from these carriers was found to be increasing from 5.6% to 21.3% with increasing the carrier size. The FPF was found to be greater (21%) with the highest particle size of the carrier (150 lm). Conclusions The aerosolization of drug was dependent on the size of polymer carriers. The smaller size of the carrier resulted in lower FPF which was increased with increasing the carrier size. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
The complex systems approach offers an opportunity to replace the extant pre-dominant mechanistic view on sport-related phenomena. The emphasis on the environment-system relationship, the applications of complexity principles, and the use of nonlinear dynamics mathematical tools propose a deep change in sport science. Coordination dynamics, ecological dynamics, and network approaches have been successfully applied to the study of different sport-related behaviors, from movement patterns that emerge at different scales constrained by specific sport contexts to game dynamics. Sport benefit from the use of such approaches in the understanding of technical, tactical, or physical conditioning aspects which change their meaning and dilute their frontiers. The creation of new learning and training strategies for teams and individual athletes is a main practical consequence. Some challenges for the future are investigating the influence of key control parameters in the nonlinear behavior of athlete-environment systems and the possible relatedness of the dynamics and constraints acting at different spatio-temporal scales in team sports. Modelling sport-related phenomena can make useful contributions to a better understanding of complex systems and vice-versa.
Resumo:
This study investigated changes in the complexity (magnitude and structure of variability) of the collective behaviours of association football teams during competitive performance. Raw positional data from an entire competitive match between two professional teams were obtained with the ProZone® tracking system. Five compound positional variables were used to investigate the collective patterns of performance of each team including: surface area, stretch index, team length, team width, and geometrical centre. Analyses involve the coefficient of variation (%CV) and approximate entropy (ApEn), as well as the linear association between both parameters. Collective measures successfully captured the idiosyncratic behaviours of each team and their variations across the six time periods of the match. Key events such as goals scored and game breaks (such as half time and full time) seemed to influence the collective patterns of performance. While ApEn values significantly decreased during each half, the %CV increased. Teams seem to become more regular and predictable, but with increased magnitudes of variation in their organisational shape over the natural course of a match.
Resumo:
This book had to be written. Congratulations to British dispensing optician Timothy Bowden for his dogged determination in researching, writing and essentially self-publishing this hefty tome. How does one tackle the monumental task of tracking the complex history of the development of the contact lens, from the production of the first human artificial glass eyes by Ludwig Müller-Uri in Germany in 1835 to the sophisticated, high-technology, multi-billion dollar contact lens industry of today? The superficial answer may seem simple: do it chronologically, but it is much more difficult than that. Multiple contemporaneous and seemingly unconnected events often converged to result in ideas that elevated contact lens technology to the next level and many developments revolved around the deliberate and sometimes accidental activities of a long list of enthusiasts, inventors, entrepreneurs, businessmen, technicians, scientists, engineers, polymer scientists, opticians, optometrists and ophthalmologists.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
In this response to Tom G. K. Bryce and Stephen P. Day’s (Cult Stud Sci Educ. doi:10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I use an alternative view of the relationship between science, technology and society, supported by evidence from both science and society, to suggest science-informed citizens as a more realistic outcome image of school science than the authors’ one of mini-scientists. The intellectual independence of students Bryce and Day assume, and intend for school science, is countered with an active intellectual dependence. It is only in relation to emerging and uncertain scientific contexts that students should be taught about scepticism, but they also need to learn when, and why to trust science as an antidote to the expressions of doubting it. Some suggestions for pedagogies that could lead to these new learnings are made. The very recent fifth report of the IPCC answers many of their concerns about climate change.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.
Resumo:
Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.