905 resultados para complete spinal cord injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurogenic neuroprotection elicited by deep brain stimulation is emerging as a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the fastigial nucleus, but not dentate nucleus, has been shown to reduce the volume of focal infarction. Protection of neural tissue is a rapid intervention that has a relatively long-lasting effect, rendering fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application. We review some of the main findings of animal experimental research from a clinical perspective. Results: Although the complete mechanisms of neuroprotection induced by FNS remain unclear, important data has been presented in the last two decades. The acute effect of electrical stimulation of the fastigial nucleus is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade. A better understanding of the cellular and molecular mechanisms underlying neurogenic neuroprotection by stimulation of deep brain nuclei, with special attention to the fastigial nucleus, can contribute toward improving neurological outcomes in ischemic brain insults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To analyze the efficiency of high voltage pulsed current (HVPC) with early application in three different sites, in the regeneration of the sciatic nerve in rats submitted to crush injury, the sciatic functional index (SFI) was used to assess the functional recovery. Methods: After crushing of the nerve, 57 animals were submitted to cathodal HVPC at frequency of 50Hz and voltage of 100V, 20 minutes per day, 5 days per week. The rats were divided into five groups: control group; ganglion group; ganglion + muscle group; muscle group; and sham group. The SFI was determined weekly for seven weeks, from the preoperative period to the 6th postoperative week. Results: Compared with the control group, the results showed a significantly better performance of group 2 for the first 3 weeks; group 3 showed significantly better performance in the third week; and group 4 showed a significantly negative performance during the 481 and 6th weeks. Conclusion: Early application of HVPC had a positive effect in the treatment of the spinal cord region and the sciatic nerve root ganglion with a dispersive electrode on the contralateral lumbar region or on the gastrocnemius. However, HVPC had a negative effect in the treatment with an active electrode on the gastrocnemius and a dispersive electrode on the contralateral thigh. Level of evidence II, Prospective comparative study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors present a prospective study on the coexistence of spinal injury (SI) and severe traumatic brain injury (TBI) in patients who were involved in traffic accidents and arrived at the Emergency Department of Hospital das Clinicas of the University of Sao Paulo between September 1, 2003 and December 31, 2009. A whole-body computed tomography was the diagnostic method employed in all cases. Both lesions were observed simultaneously in 69 cases (19.4%), predominantly in males (57 individuals, 82.6%). Cranial injuries included epidural hematoma, acute subdural hematoma, brain contusion, ventricular hemorrhage and traumatic subarachnoid hemorrhage. The transverse processes were the most fragile portion of the vertebrae and were more susceptible to fractures. The seventh cervical vertebra was the most commonly affected segment, with 24 cases (34.78%). The distribution of fractures was similar among the other cervical vertebrae, the first four thoracic vertebrae and the lumbar spine. Neurological deficit secondary to SI was detected in eight individuals (11.59%) and two individuals (2.89%) died. Traumatic subarachnoid hemorrhage was the most common intracranial finding (82.6%). Spinal surgery was necessary in 24 patients (34.78%) and brain surgery in 18 (26%). Four patients (5.79%) underwent cranial and spinal surgeries. The authors conclude that it is necessary a judicious assessment of the entire spine of individuals who presented in coma after suffering a brain injury associated to multisystemic trauma and whole-body CT scan may play a major role in this scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the functional and quantitative differences between the early and delayed use of phototherapy in crushed median nerves. After a crush injury, low-level laser therapy (GaAs) was applied transcutaneously at the injury site, 3 min daily, with a frequency of five treatments per week for 2 weeks. In the early group, the first laser treatment started immediately after surgery, and in the delayed group, after 7 days. The grasping test was used for functional evaluation of the median nerve, before, 10, and 21 days after surgery, when the rats were killed. Three segments of the median nerve were analyzed histomorphometrically by light microscopy and computer analysis. The following features were observed: myelinated fiber and axon diameters, myelin sheath area, g-ratio, density and number of myelinated fibers, and area and number of capillaries. In the proximal segment (site of crush), the nerves of animals submitted to early and delayed treatment showed myelinated fiber diameter and myelin sheath area significantly larger compared to the untreated group. In the distal segment, the myelin sheath area was significantly smaller in the untreated animals compared to the delayed group. The untreated, early, and delayed groups presented a 50, 57, and 81% degree of functional recovery, respectively, at 21 days after injury, with a significant difference between the untreated and delayed groups. The results suggest that the nerves irradiated with low-power laser exhibit myelinated fibers of greater diameter and a better recovery of function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. Methodology/Principal Findings: Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. Conclusions/Significance: In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Os pacientes lesado-medulares passam a se submeter a uma nova conformação de forças sobre as articulações. O quadril é uma das mais afetadas, por utilizarem a cadeira de rodas como meio de locomoção. Alterações osteoarticulares, como ossificação heterotópica, podem ser encontradas nesses pacientes, sendo evidenciadas por estudos radiográficos. Este estudo visa identificar a incidência das alterações radiográficas em quadris de paciente lesados medulares. MÉTODOS: Foram avaliados 15 pacientes (30 quadris) acompanhados no Laboratório de Reabilitação Biomecânica do Aparelho Locomotor do HC-Unicamp, analisando-se radiografias da bacia em posições antero-posterior e lowenstein. RESULTADOS: Dos quadris avaliados, apenas sete (23%) não possuíam alguma evidência de dano à superfície articular. A prevalência de ossificação heterotópica encontrada (16,6%) aproximou-se a da literatura. CONCLUSÃO: Devido à prevalência de alterações articulares encontradas, justifica-se o acompanhamento radiográfico dos quadris destes pacientes. Nível de Evidência II. Desenvolvimento de critérios diagnósticos em pacientes consecutivo. (com padrão de referência "ouro" aplicado).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Analisar a eficiência do tratamento com a estimulação elétrica de alta voltagem (EEAV) em três diferentes locais, aplicada precocemente na regeneração do nervo ciático submetido à lesão por esmagamento, e avaliada através do índice funcional do ciático (IFC), em ratos. MÉTODO: Após o esmagamento, 57 ratos foram submetidos à EEAV catódica nos parâmetros: frequência de 50Hz, 100V de tensão, 20 minutos diários, 5 dias por semana. Os ratos foram divididos aleatoriamente em: grupo controle; grupo gânglio; grupo gânglio + músculo; grupo músculo e; grupo simulado. O IFC foi avaliado semanalmente durante sete semanas, partindo do pré-operatório até a 6ª semana pós-operatória. RESULTADOS: Em comparação ao grupo controle, os resultados mostraram desempenho significativamente superior do grupo gânglio nas três primeiras semanas, e do grupo gânglio + músculo na 3ª semana, enquanto o grupo músculo teve desempenho significativamente negativo na 4ª e 6ª semanas. CONCLUSÃO: a EEAV aplicada precocemente, foi positiva no tratamento da região da medula e gânglio da raiz nervosa do ciático com o eletrodo dispersivo na região lombar contralateral ou no músculo gastrocnêmio. Porém, proporcionou efeitos negativos no tratamento com eletrodo ativo no músculo gastrocnêmio e dispersivo na coxa contralateral. Nível de evidência II, Estudo prospectivo comparativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nozizeptive Spinalganglienneurone detektieren mit einer Vielzahl liganden- und spannungsgesteuerter Ionenkanäle noxische Reize, d.h. Reize, die eine Gewebeschädigung bewirken können, wandeln sie in Aktionspotenzialentladungen um und leiten sie über das Rückenmark zum Gehirn weiter, wo eine Schmerzempfindung ausgelöst wird. Die pronozizeptiven transienten Rezeptor-Potenzial-Kanäle der Vanilloidrezeptorfamilie, TRPV1 und TRPV2, sind die klassischen Transduktionsmoleküle für noxische Hitzereize in den Spinalganglien und werden von Reiztemperaturen über 43°C bzw. 52°C aktiviert. Daneben finden sich auch antinozizeptive Membranproteine, wie z.B. der metabotrope Cannabinoidrezeptor CB1. Er koppelt an spannungsgesteuerte Kaliumkanäle, die neben Natrium- und Kalziumkanälen ebenfalls an der neuronalen Erregbarkeit beteiligt sind. Von den spannungsgesteuerten Kaliumkanälen könnte der Kv1.4, der einen schnell inaktivierenden A-Strom vermittelt, an antinozizeptiven Signalwegen beteiligt sein. Um die molekulare Physiologie der Regulation von Nozizeption und Antinozizeption zu charakterisieren, wurde die Expression bzw. Ko-Expression dieser Membranproteine auf der einen als auch die funktionelle Charakterisierung von TRPV1 auf der anderen Seite im Soma der Spinalganglienneurone und im heterologen Expressionssystem untersucht. TRPV1 wurde in je einem Drittel und TRPV2 in je einem Zehntel aller Spinalganglienneurone nachgewiesen. Das Expressionsmuster veränderte sich nicht zwischen verschiedenen Präparationsmethoden, die zur Aufarbeitung der Zellen für unterschiedliche experimentelle Ansätze notwendig sind. Somit können die aus Expressionsanalysen und funktionellen Untersuchungen gewonnenen Ergebnisse miteinander verglichen werden. Obwohl TRPV1 und TRPV2 in unterschiedlich großen Zellen exprimiert werden, überlappen dennoch ihre Größenverteilungen. Durch Ko-Expressionsanalysen konnten hier erstmalig TRPV1-TRPV2-ko-exprimierende Neurone detektiert werden. Mit dem neu entwickelten N-terminalen Antikörper gegen TRPV1 (3C11) konnte gezeigt werden, dass für TRPV1 verschiedene Splice-Varianten existieren. Neben den bereits bekannten Splice-Varianten wurde hier die neue Variante Vr.3’sv isoliert. Diese besitzt zwischen Exon 15 und 16 eine Insertion aus 104 Basen und exprimiert daher einen veränderten C-Terminus. Trotz dieser Veränderung bildeten sich im heterologen Expressionssystem funktionelle Kanäle aus, die im Gegensatz zu den anderen Varianten immer noch durch Capsaicin aktivierbar waren. Vr.3’sv könnte als Homo- oder Heterotetramer die Eigenschaften TRPV1-positiver Neurone beeinflussen. Bei der Bestimmung der Häufigkeit von TRPV1 in einem Gewebe ist somit die Wahl des Antikörpers von entscheidender Bedeutung. Für TRPV2 dagegen gibt es hier keine Hinweise auf Splice-Varianten. TRPV1 wird durch das Vanilloid Capsaicin aktiviert, wobei diese Substanz neurotoxisch ist und eine Degeneration von Neuronen und epidermalen Nervenfasern bewirkt. Hier wurde nun gezeigt, dass unabhängig von den Splice-Varianten nicht alle TRPV1-positiven Neurone bei langer Inkubationszeit absterben. Funktionelle Untersuchungen belegten, dass auch Capsaicin-sensitive Zellen unter dem Einfluss des Agonisten überleben können. Dieser Schutzmechanismus wird möglicherweise von den verschiedenen Splice-Varianten vermittelt. Ko-Expressionsanalysen zeigten, dass der spannungsgesteuerte Kaliumkanal Kv1.4 in nahezu allen TRPV1- aber nicht TRPV2-positiven Neuronen exprimiert wird. Desweiteren ko-exprimierten nahezu alle TRPV1-positiven Neurone auch den Cannabinoidrezeptor CB1. Diese fast vollständige Ko-Lokalisation von CB1 und Kv1.4 in nozizeptiven Spinalganglienneuronen spricht für eine funktionell synergistische Aktivität. Der Kaliumkanal kann unter der regulativen Kontrolle von CB1 als Vermittler von A-Typ-Kaliumströmen an der Kontrolle der repetitiven Entladungen in der Peripherie und der Transmitterausschüttung zentral beteiligt sein. Es ergeben sich daraus Ansatzpunkte für die Entwicklung neuer Medikamente. Mit Kv1.4-Aktivatoren und/oder peripher wirkenden Cannabinoiden könnten die Nebenwirkungen der Cannabinoide im zentralen Nervensystem umgangen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic pain affects one in five adults, reducing quality of life and increasing risk of developing co-morbidities such as depression. Neuropathic pain results by lesions to the nervous system that alter its structure and function leading to spontaneous pain and amplified responses to noxious and innocuous stimuli. The Opioid System is probably the most important system involved in control of nociceptive transmission. Dynorphin and nociceptin systems have been suggested key mediators of some neuropathic pain aspects. An important role also for BDNF has been recently suggested since its involvement in the peripheral and central sensitization phenomena is known. We studied neuroplastic alterations occurring in chronic pain in mice subjected to the chronic constriction injury (CCI). We investigated gene expression alterations of both BDNF and Opioid System at spinal level at different intervals of time. A transient upregulation of pBDNF and pDYN was observed in spinal cord, while increasing upregulation of ppN/OFQ was found in the DRGs of injured mice. Development of neuropathic behavioral signs has been observed in ICR/CD-1 and BDNF+/+ mice, subjected to CCI. A different development of these signs was observed in BDNF+/-. We also studied gene expression changes of investigated systems in different brain areas fourteen days after surgery. We found pBDNF, pDYN, pKOP, ppN/OFQ and pNOP gene expression alterations in several areas of CCI mice. In the same brain regions we also determined bioactive nociceptin peptide levels, and elevated N/OFQ levels were observed in the amygdala area. Histone modifications studies have been performed in BDNF and DYN gene promoters of CCI animal spinal cord showing selected alterations in pDYN gene promoter. In addition, a preliminary characterization of the innovative NOP-EGFP mice was performed. Overall, our results could be useful to understand which and how neuropeptidergic systems are involved in neuroplastic mechanism occurring in neuropathic pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preoperative mapping of the arterial spinal supply prior to thoracoabdominal aortic aneurysm repair is highly relevant because of high risk for postoperative ischemic spinal cord injuries such as paraparesis or paraplegia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommendations stated in the TASC II guidelines for the treatment of peripheral arterial disease (PAD) regard a heterogeneous group of patients ranging from claudicants to critical limb ischaemia (CLI) patients. However, specific considerations apply to CLI patients. An important problem regarding the majority of currently available literature that reports on revascularisation strategies for PAD is that it does not focus on CLI patients specifically and studies them as a minor part of the complete cohort. Besides the lack of data on CLI patients, studies use a variety of endpoints, and even similar endpoints are often differentially defined. These considerations result in the fact that most recommendations in this guideline are not of the highest recommendation grade. In the present chapter the treatment of CLI is not based on the TASC II classification of atherosclerotic lesions, since definitions of atherosclerotic lesions are changing along the fast development of endovascular techniques, and inter-individual differences in interpretation of the TASC classification are problematic. Therefore we propose a classification merely based on vascular area of the atherosclerotic disease and the lesion length, which is less complex and eases the interpretation. Lesions and their treatment are discussed from the aorta downwards to the infrapopliteal region. For a subset of lesions, surgical revascularisation is still the gold standard, such as in extensive aorto-iliac lesions, lesions of the common femoral artery and long lesions of the superficial femoral artery (>15 cm), especially when an applicable venous conduit is present, because of higher patency and limb salvage rates, even though the risk of complications is sometimes higher than for endovascular strategies. It is however more and more accepted that an endovascular first strategy is adapted in most iliac, superficial femoral, and in some infrapopliteal lesions. The newer endovascular techniques, i.e. drug-eluting stents and balloons, show promising results especially in infrapopliteal lesions. However, most of these results should still be confirmed in large RCTs focusing on CLI patients. At some point when there is no possibility of an endovascular nor a surgical procedure, some alternative non-reconstructive options have been proposed such as lumbar sympathectomy and spinal cord stimulation. But their effectiveness is limited especially when assessing the results on objective criteria. The additional value of cell-based therapies has still to be proven from large RCTs and should therefore still be confined to a research setting. Altogether this chapter summarises the best available evidence for the treatment of CLI, which is, from multiple perspectives, completely different from claudication. The latter also stresses the importance of well-designed RCTs focusing on CLI patients reporting standardised endpoints, both clinical as well as procedural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate causes of the lack of clinical improvement after thoracolumbar disc surgery. STUDY DESIGN: Case-control magnetic resonance imaging (MRI) study. ANIMALS: Chondrodystrophic dogs with acute thoracolumbar disc disease treated by hemilaminectomy: 10 that had no short-term clinical improvement and 12 with "normal" clinical improvement. METHODS: Dogs that had surgery for treatment of intervertebral disc extrusion (2003-2008) where thoracolumbar disc disease was confirmed by MRI were evaluated to identify dogs that had lack of clinical improvement after surgery. Ten dogs with delayed recovery or clinical deterioration were reexamined with MRI and compared with 12 dogs with normal recovery and MRI reexamination after 6 weeks (control group). RESULTS: Of 173 dogs, 10 (5.8%) had clinical deterioration within 1-10 days after surgery. In 8 dogs, residual spinal cord compression was identified on MRI. Bleeding was present in 1 dog. In 3 dogs, the cause was an incorrect approach and insufficient disc material removal. In 3 dogs, recurrence occurred at the surgical site. In 1 dog, the centrally located extruded material was shifted to the contralateral side during surgery. These 8 dogs had repeat surgery and recovery was uneventful. In 2 dogs, deterioration could not be associated with a compressive disc lesion. Hemorrhagic myelomalacia was confirmed by pathologic examination in 1 dog. The other dog recovered after 6 months of conservative management. CONCLUSION: Delayed postsurgical recovery or deterioration is commonly associated with newly developed and/or remaining compressive disc lesion. CLINICAL RELEVANCE: We recommend early MRI reexamination to assess the postsurgical spinal canal and cord, and to plan further therapeutic measures in chondrodystrophic dogs with delayed recovery after decompressive hemilaminectomy for thoracolumbar disc disease.