879 resultados para column chromatography
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug, everolimus (SDZ RAD), using HPLC-tandem mass spectrometry. Whole blood samples (500 mul) were prepared by protein precipitation, followed by C-18 solid-phase extraction. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface operating in positive ionization mode. The assay was linear from 0.5 to 100 mug/l (r(2) > 0.996, n = 9). The analytical recovery and inter-day imprecision, determined using whole blood quality control samples (n = 5) at 0.5, 1.2, 20.0, and 75.0 mug/l, was 100.3-105.4% and less than or equal to7.6%, respectively. The assay had a mean relative recovery of 94.8 +/- 3.8%. Extracted samples were stable for up to 24 h. Fortified everolimus blood samples were stable at -80 degreesC for at least 8 months and everolimus was found to be stable in blood when taken through at least three freeze-thaw cycles. The reported method provides accurate, precise and specific measurement of everolimus in blood over a wide analytical range and is currently supporting phase 11 and III clinical trials. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
A combined procedure for separating Lu, Hf, Sm, Nd, and rare earth elements (REEs) from a single sample digest is presented. The procedure consists of the following five steps: (1) sample dissolution via sodium peroxide sintering; (2) separation of the high field strength elements from the REEs and other matrix elements by a HF-free anion-exchange column procedure; (3) purification of Hf on a cation-exchange resin; (4) separation of REEs from other matrix elements by cation exchange; (5) Lu, Sm, and Nd separation from the other REEs by reversed-phase ion chromatography. Analytical reproducibilities of Sm-Nd and Lu-Hf isotope systematics are demonstrated for standard solutions and international rock reference materials. Results show overall good reproducibilities for Sm-Nd systematics independent of the rock type analyzed. For the Lu-Hf systematics, the reproducibility of the parent/daughter ratio is much better for JB-1 (basalt) than for two analyzed felsic crustal rocks (DR-N and an Archaean granitoid). It is demonstrated that this poorer reproducibility of the Lu/Hf ratio is truly caused by sample heterogeneity; thus, results are geologically reasonable.
Resumo:
Death adders (genus Acanthophis) are unique among elapid snakes in both morphology and venom composition. Despite this genus being among the most divergent of all elapids, the venom has been historically regarded as relatively quite simple. In this study, liquid chromatography/mass spectrometry (LC/MS) analysis has revealed a. much greater diversity in venom composition, including the presence of molecules of novel molecular weights that may represent a new class of venom component. Furthermore, significant variation exists between species and populations,, which allow for the LC/MS fingerprinting of each species. Mass profiling of Acanthophis venoms clearly demonstrates the effectiveness of this technique which underpins fundamental studies ranging from chemotaxonomy to drug design. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
In this paper, we report our modelling evaluation on the effect of tracer density on axial dispersion in a batch oscillatory baffled column (OBC). Tracer solution of potassium nitrite, its specific density ranged from 1.0 to 1.5, was used in the study, and was injected to the vertical column from either the top or bottom. Local concentration profiles are measured using conductivity probes at two locations along the height of the column. Using the experimental measured concentration profiles together with both 'Tank-in-Series' and 'Plug Flow with Axial Dispersion' models, axial dispersion coefficients were determined and used to describe the effect of specific tracer density on mixing in the OBC. The results showed that the axial dispersion coefficients evaluated by the two models are very similar in both magnitudes and trends, and the range of variations in such coefficients is generally larger for the bottom injection than for the top one. Empirical correlations linking the mechanical energy for mixing, the specific density of tracer and axial dispersion coefficient were established. Using these correlations, we identified the enhancements of up to 269% on axial dispersion for various specific tracer densities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A 2-m, adiabatic column has been successfully refurbished and recommissioned for coal self-heating research at The University of Queensland. Subbituminous coal from the Callide Coalfields reached thermal runaway in just under 19 days from a starting temperature of 20-22 degreesC. The coal was loaded as two layers, with an R-70 index of 2.73 degreesC h(-1) and 5.90 degreesC h(-1) for the upper layer and lower layer respectively. Initially, a hotspot developed in the upper layer between 120 and 140 cm from the air inlet due to moisture adsorption. After 7 days, self-heating in the lower half of the column began to take over, consistent with the higher R-70 index of this coal. The location of the final hotspot was approximately 60 cm from the air inlet. Further tests on Australian coals, with the column, will enable a better understanding of coal self-heating under conditions closely resembling mining, transport and storage of coal. The results from the column will also provide industry with the information needed to manage the coal self-heating hazard. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We studied the variation in toxin profiles of purified extracts of 10 individual specimens and two pools of ciguateric Caranx latus. High-performance liquid chromatography/mass spectrometry (HPLC/MS) identified in all individual samples at least seven Caribbean ciguatoxins (C-CTXs) comprising C-CTX-1 and its epimer C-CTX-2 ([M + H](+) m/z 1141.58), and five new C-CTX congeners with pseudo-molecular ions at m/z 1141.58, 1143.60, 1157.57, 1159.58, and 1127.57. In some samples, additional C-CTX isomers were detected with [M + H](+) ions at m/z 1141.58 (two), 1143.60 (one) and 1157.57 (two). The two low-toxic pools contained only four to six ciguatoxins. The comparison in relative proportions of four different mass classes ([M + H](+) at m/z 1141, 1143, 1157 and 1127) showed that the group at m/z 1157 increased (2-20%) with flesh toxicity. More than 80% of group m/z 1141 comprised C-CTX-1, C-CTX-2 and their isomer C-CTX-1 a whose level in this group correlated with fish toxicity. Contrary to low-toxic fishes, high-risk specimens had C-CTX-1 levels
Resumo:
Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K-l of 0.9 muM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity.
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.
Resumo:
This investigation re-examines theoretical aspects of the allowance for effects of thermodynamic non-ideality on the characterization of protein self-association by frontal exclusion chromatography, and thereby provides methods of analysis with greater thermodynamic rigor than those used previously. Their application is illustrated by reappraisal of published exclusion chromatography data for hemoglobin on the controlled-pore-glass matrix CPG-120. The equilibrium constant of 100/M that is obtained for dimerization of the (02 species by this means is also deduced from re-examination of published studies of concentrated hemoglobin solutions by osmotic pressure and sedimentation equilibrium methods. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This article reviews the progress of a personal endeavour to develop chromatography as a quantitative procedure for the determination of reaction stoichiometries and equilibrium constants governing protein interactions. As well as affording insight into an aspect of chromatography with which many protein chemists are unfamiliar, it shows the way in which minor adaptations of conventional chromatographic practices have rendered the technique one of the most powerful methods available for the characterization of interactions. That pathway towards quantification is followed from the introduction of frontal gel filtration for the study of protein self-association to the characterization of ligand binding by the biosensor variant of quantitative affinity chromatography.
Resumo:
A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and
Resumo:
This work addresses the effects of catalyst deactivation and investigates methods to reduce their impact on the reactive distillation columns performance. The use of variable feed quality and reboil ratio are investigated using a rigorous dynamic model developed in gPROMS and applied to an illustrative example, i.e., the olefin metathesis system, wherein 2-pentene reacts to form 2-butene and 3-hexene. Three designs and different strategies on column energy supply to tackle catalyst deactivation are investigated and the results compared.
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.