961 resultados para colon saline flush
Resumo:
The value of the sentinel lymph node (SLN) procedure in colon cancer patients remains a matter of debate. The objective of this prospective, multicenter trial was 3-fold: to determine the identification rate and accuracy of the SLN procedure in patients with resectable colon cancer; to evaluate the learning curve of the SLN procedure; and to assess the extent of upstaging due to the SLN procedure.
Resumo:
OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.
Resumo:
Colorectal cancer is the second leading cause of cancer death in Switzerland. The nihilism that dominated the treatment of these patients for decades has been replaced by a measure of enthusiasm, given recent therapeutic advances. New anticancer drugs such as irinotecan and oxaliplatin have changed the standard chemotherapy treatment of metastatic colorectal cancer. However, the real hype has come from molecular targeted therapy. Identification of cellular processes characteristic of colon cancer has permitted therapeutic targeting with favorable therapeutic index. Inhibition of the epidermal growth factor receptor in the clinic has provided proof of principle that interruption of signal transduction cascades in patients has therapeutic potential. Angiogenesis, especially the vascular endothelial growth factor pathway, has been proven to be another highly successful molecular target. In this article, we will review molecular targets, which are under active clinical investigation in colon cancer.
Resumo:
Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator-associated receptors alpha and gamma (PPARalpha, PPARgamma) are mediators of inflammation and may be involved in inflammatory bowel disease (IBD) and food responsive diarrhea (FRD) of dogs. The present study compared mRNA abundance of NR and NR target genes [multi drug-resistance gene-1 (MDR1), multiple drug-resistance-associated proteins (MRD2, MRD3), cytochrome P450 (CYP3A12), phenol-sulfating phenol sulfotransferase (SULT1A1) and glutathione-S-transferase (GST A3-3)] in biopsies obtained from duodenum and colon of dogs with IBD and FRD and healthy control dogs (CON; n=7 per group). Upon first presentation of dogs, mRNA levels of PPARalpha, PPARgamma, CAR, PXR and RXRalpha in duodenum as well as PPARgamma, CAR, PXR and RXRalpha in colon were not different among groups (P>0.10). Although mRNA abundance of PPARalpha in colon of dogs with FRD was similar in both IBD and CON (P>0.10), PPARalpha mRNA abundance was higher in IBD than CON (P<0.05). Levels of mRNA of MDR1 in duodenum were higher in FRD than IBD (P<0.05) or CON (P<0.001). Compared with CON, abundances of mRNA for MRP2, CYP3A12 and SULT1A1 were higher in both FRD and IBD than CON (P<0.05). Differences in mRNA levels of PPARalpha and MRP2 in colon and MDR1, MRP2, CYP3A12 and SULT1A1 in duodenum may be indicative for enteropathy in FRD and (or) IBD dogs relative to healthy dogs. More importantly, increased expression of MDR1 in FRD relative to IBD in duodenum may be a useful diagnostic marker to distinguish dogs with FRD from dogs with IBD.
Resumo:
Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.
Resumo:
The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10(-4) M, intraluminally) and morphine (10(-4) M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrier.
Resumo:
BACKGROUND: Low tissue oxygen tension is an important factor leading to the development of wound dehiscence and anastomotic leakage after colon surgery. We tested whether supplemental fluid and supplemental oxygen can increase tissue oxygen tension in healthy and injured, perianastomotic, and anastomotic colon in an acutely instrumented pig model of anastomosis surgery. METHODS: Sixteen Swiss Landrace pigs were anesthetized (isoflurane 0.8%-1%) and their lungs ventilated. The animals were randomly assigned to low fluid treatment ("low" group, 3 mL x kg(-1) x h(-1) lactated Ringer's solution) or high fluid treatment ("high" group, 10 mL/kg bolus, 18 mL x kg(-1) x h(-1) lactated Ringer's solution) during colon anastomosis surgery and a subsequent measurement period (4 h). Two-and-half hours after surgery, tissue oxygen tension was recorded for 30 min during ventilation with 30% oxygen. Three hours after surgery, the animals' lungs were ventilated with 100% oxygen for 60 min. Tissue oxygen tension was recorded in the last 30 min. Tissue oxygen tension was measured with polarographic Clark-type electrodes, positioned in healthy colonic wall, close (2 cm) to the anastomosis, and in the anastomosis. RESULTS: In every group, tissue oxygen tension during ventilation with 100% oxygen was approximately twice as high as during ventilation with 30% oxygen, a statistically significant result. High or low volume crystalloid fluid treatment had no effect on colon tissue oxygen tension. CONCLUSIONS: Supplemental oxygen, but not supplemental crystalloid fluid, increased tissue oxygen tension in healthy, perianastomotic, and anastomotic colon tissue.
Resumo:
BACKGROUND AND OBJECTIVE: Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. METHODS: In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. RESULTS: Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. CONCLUSIONS: The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.
Resumo:
The effect of varying injection rates of a saline chaser on aortic enhancement in computed tomography (CT) angiography was determined. Single-level, dynamic CT images of a physiological flow phantom were acquired between 0 and 50 s after initiation of contrast medium injection. Four injection protocols were applied with identical contrast medium administration (150 ml injected at 5 ml/s). For baseline protocol A, no saline chaser was applied. For protocols B, C, and D, 50 ml of saline was injected at 2.5 ml/s, 5 ml/s, and 10 ml/s, respectively. Injecting the saline chaser at twice the rate as the contrast medium yielded significantly higher peak aortic enhancement values than injecting the saline at half or at the same rate as the contrast medium (P < 0.05). Average peak aortic enhancement (HU) measured 214, 214, 218, and 226 for protocols A, B, C, and D, respectively. The slower the saline-chaser injection rate, the longer the duration of 90% peak enhancement: 13.6, 12.2, and 11.7 s for protocols B, C, and D, respectively (P > 0.05). In CT angiography, saline chaser injected at twice the rate as the contrast medium leads to increased peak aortic enhancement and saline chaser injected at half the rate tends towards prolonging peak aortic enhancement plateau.