961 resultados para classical aversive conditioning
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The median raphe nucleus (MRN) has been suggested as the origin of a behavioral inhibition system that projects to the septum and hippocampus. Electrical stimulation of this mesencephalic area causes behavioral and autonomic manifestations characteristic of fear such as, freezing, defecation and micturition. In this study we extend these observations by analyzing the behavioral and autonomic responses of rats with lesions in the MRN submitted to a contextual conditioning paradigm. The animals underwent electrolytic or sham lesions of the median raphe nucleus. One day (acute) or 7 days (chronic) later they were tested in an experimental chamber where they received 10 foot-shocks (0.7 mA, 1 s with 20-s interval). The next day, sham and MRN-lesioned animals were tested again either in the same or in a different experimental chamber. During this, the duration of freezing, rearings, bouts of micturition and number of fecal boli were recorded. Sham-operated rats placed in the same chamber showed more freezing than rats exposed to a different context. This freezing behavior was clearly suppressed in rats with acute or chronic lesions in the MRN. MRN lesions also reduced the bouts of micturition and number of fecal boli. These rats showed a reduced number of rearings than sham-lesioned rats. This effect is probably the result of the displacement effect provoked by freezing since no significant differences in the number of rearings could be observed between these animals and the NMR-lesioned rats tested in an open field. This lesion produced higher horizontal locomotor activity in this test than the controls (sham-lesioned rats). These results point to the importance of the median raphe nucleus in the processing of fear conditioning with freezing being the most salient feature of it. Behavioral inhibition is also under control of MRN but its neural substrate seems to be dissociated from that of contextual fear. (C) 1998 Elsevier B.V. B.V.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
The Birkhoff-Gustavson normal form is employed to study separately chaos and resonances in a system with two degrees of freedom. In the integrable regime, tunnelling effects are appreciable when the nearest level spacings show oscillations. Tunnelling among states in the libration and rotation tori regions is also observed. The regularity of avoided crossings due to tunnelling indicates a collective effect and is associated with an isolated resonance. The spectral fluctuations also show a strong level correlation. The Husimi distribution, on the other hand, is insensitive to avoided crossings. An integrable approximation to the overlap of resonances is obtained and a theoretical description is given for an isolated cubic resonance plus a complex orbit. In the non-integrable regime chaos is stronger after overlapping and preferentially at low energies.
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
The electromyographic activity of the shoulder muscles deltoid - anterior portion (DA) and pectoralis major - clavicular portion (PMC) was tested on 24 male volunteers using a 2 channel TEC A TE4 electromyograph and Hewlett Packard surface electrodes during the execution of four different modalities of frontal-lateral cross, dumbbells exercises. The results showed that all of the tested exercises developed high levels of action potential for both muscles. So, we jusfity the indication of all of them for physical fitness programmes for DA and PMC. Some suggestions to the use of the tested exercises are presented.
Resumo:
The action potential level for shoulder muscles deltoid-anterior portion (DA) and pectoralis major-clavicular portion (PMC) determined by four different modalities of execution of rowing exercises, each one with two different grips, was recorded. These were compared with the action potential level determined for the same muscles by four different modalities of execution of the frontal-lateral cross, dumbbells exercises. Twenty-four male volunteers were examined using a 2 channel TECA TE4 electromyograph and Hewlett Packard surface electrodes. The statistic analysis showed significant (p<0,05) superiority for all the frontal-lateral cross, dumbbells exercises in comparison to all rowing exercises for the PMC, for the DA this generalized supremacy was not observed.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
Evaporative cooling operates using water and air as working fluids. It consists in water evaporation, through the passage of an airflow, thus decreasing the air temperature. This system has a great potential to provide thermal comfort in places where air humidity is low, being, however, less efficient where air humidity is high. A way to solve this problem is to use dehumidifiers to pre-conditioning the process air. This paper presents a system that can be used in humid climates coupling desiccant dehumidification equipment to evaporative coolers. The paper shows, initially, the main characteristics of the evaporative cooling and of the adsorption dehumidification systems. Later on the coupled systems, in which occurs a dehumidification by adsorption in a counter flow rotary heat exchanger following the evaporate cooling of the air in evaporative coolers, are analyzed. The thermodynamic equations of state are also presented. Following, this paper analyzes some operation parameters such as: reactivation temperature, R/P relationship (reactivation air flow/ process air flow) and the thermodynamic conditions of the entering air flow. The paper shows the conditions for the best operation point, with regard to thermal comfort conditions and to the energy used in the process. In addition this paper presents an application of the system in different climate characteristics of several tropical and equatorial cities. Copyright © 2005 by ABCM.
Resumo:
This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).
Resumo:
Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.
Resumo:
This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.