966 resultados para cancer detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival from cutaneous melanoma is mainly dependent on the thickness of the lesion at diagnosis. Skin screening may increase detection of thin lesions and hence improve survival. Within a community-based randomized controlled trial of a population screening program for melanoma in Queensland, Australia, 9 communities were randomly assigned to the 3-year intervention and 9 communities to the control group. Skin screening prevalence was monitored by cross-sectional surveys at baseline, 1, 2 and 3 years into the intervention and 2 years later. At baseline, prevalence of whole-body clinical skin examination was similar in intervention and control communities. In intervention communities, the prevalence of whole-body skin examinations increased to 29.2%, an absolute difference of 18% from baseline, with a peak of 34.8% 2 years after baseline, and began to decline again at the end of the intervention period. The largest increases were seen in men and women ≥50 years. Uptake of screening did not differ according to melanoma risk factors; however, the decline in screening was less in participants who reported a number of melanoma risk factors. The prevalence of skin self-examination remained stable during the intervention program. No changes were observed in the control communities. These results indicate that the intervention program significantly increased the prevalence of whole-body clinical skin examinations in intervention communities. Once the intervention program ceased, and particularly after skin clinics ceased, levels of skin screening began to decline. The provision of specialized skin screening clinics may be needed to achieve sufficient screening rates should population based screening for skin cancer be considered. © 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference time domain (FDTD) method is applied to investigate capabilities of an ultra-wide band (UWB) radar system to detect a breast tumor. The first part of the investigations concerns FDTD simulations of a phantom formed by a plastic container with liquid and a small reflecting target. The second part focuses on a three-dimensional numerical breast model with a small tumor. FDTD simulations are carried out assuming a planar incident wave. Various time snap shots of the electromagnetic field are recorded to learn about the physical phenomenon of reflection and scattering in different layers of the phantom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although a lot of hard work against cancer to reduces its spread but it still continues to kill with abandon. The need for a biomarker for cancer early detection becomes the most mind concentrated scientists. MicroRNAs the tiny non coding RNA molecules opened new path for the scientists to determine the cancer in its early stages. Expression of microRNAs profiles has been investigated to be involved in cancer development. Here we determined the expression of microRNAs in serum of Iraqi healthy volunteers and other women diagnosed with breast cancer. MicroRNAs expression has been determined by using real time qPCR and delta method has been used. Four of thirteen microRNAs were shown to be expressed in serum of Iraqi breast cancer women. Let-7a and miR-21 were shown to be significantly over expressed in serum of breast cancer compared with healthy serum volunteers (P= 0.022 and 0.026) respectively. While miR-26b and miR-429 found to be significantly down expressed in serum of breast cancer women (P= 0.0034 and 0.031) respectively. The result concluded that these expressed microRNAs in serum of breast cancer women could be used as a first indicator of breast cancer occurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle invasive urinary bladder cancer is one of the most lethal cancers and its detection at the time of transurethral resection remains limited and diagnostic methods are urgently needed. We have developed a muscle invasive transitional cell carcinoma (TCC) model of the bladder using porcine bladder scaffold and the human bladder cancer cell line 5637. The progression of implanted cancer cells to muscle invasion can be monitored by measuring changes in the spectrum of endogenous fluorophores such as reduced nicotinamide dinucleotide (NADH) and flavins. We believe this could act as a useful tool for the study of fluorescence dynamics of developing muscle invasive bladder cancer in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical imaging is an emerging technology towards non-invasive breast cancer diagnostics. In recent years, portable and patient comfortable hand-held optical imagers are developed towards two-dimensional (2D) tumor detections. However, these imagers are not capable of three-dimensional (3D) tomography because they cannot register the positional information of the hand-held probe onto the imaged tissue. A hand-held optical imager has been developed in our Optical Imaging Laboratory with 3D tomography capabilities, as demonstrated from tissue phantom studies. The overall goal of my dissertation is towards the translation of our imager to the clinical setting for 3D tomographic imaging in human breast tissues. A systematic experimental approach was designed and executed as follows: (i) fast 2D imaging, (ii) coregistered imaging, and (iii) 3D tomographic imaging studies. (i) Fast 2D imaging was initially demonstrated in tissue phantoms (1% Liposyn solution) and in vitro (minced chicken breast and 1% Liposyn). A 0.45 cm3 fluorescent target at 1:0 contrast ratio was detectable up to 2.5 cm deep. Fast 2D imaging experiments performed in vivo with healthy female subjects also detected a 0.45 cm3 fluorescent target superficially placed ∼2.5 cm under the breast tissue. (ii) Coregistered imaging was automated and validated in phantoms with ∼0.19 cm error in the probe’s positional information. Coregistration also improved the target depth detection to 3.5 cm, from multi-location imaging approach. Coregistered imaging was further validated in-vivo , although the error in probe’s positional information increased to ∼0.9 cm (subject to soft tissue deformation and movement). (iii) Three-dimensional tomography studies were successfully demonstrated in vitro using 0.45 cm3 fluorescence targets. The feasibility of 3D tomography was demonstrated for the first time in breast tissues using the hand-held optical imager, wherein a 0.45 cm3 fluorescent target (superficially placed) was recovered along with artifacts. Diffuse optical imaging studies were performed in two breast cancer patients with invasive ductal carcinoma. The images showed greater absorption at the tumor cites (as observed from x-ray mammography, ultrasound, and/or MRI). In summary, my dissertation demonstrated the potential of a hand-held optical imager towards 2D breast tumor detection and 3D breast tomography, holding a promise for extensive clinical translational efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual inspection with Acetic Acid (VIA) and Visual Inspection with Lugol’s Iodine (VILI) are increasingly recommended in various cervical cancer screening protocols in low-resource settings. Although VIA is more widely used, VILI has been advocated as an easier and more specific screening test. VILI has not been well-validated as a stand-alone screening test, compared to VIA or validated for use in HIV-infected women. We carried out a randomized clinical trial to compare the diagnostic accuracy of VIA and VILI among HIV-infected women. Women attending the Family AIDS Care and Education Services (FACES) clinic in western Kenya were enrolled and randomized to undergo either VIA or VILI with colposcopy. Lesions suspicious for cervical intraepithelial neoplasia 2 or greater (CIN2+) were biopsied. Between October 2011 and June 2012, 654 were randomized to undergo VIA or VILI. The test positivity rates were 26.2% for VIA and 30.6% for VILI (p = 0.22). The rate of detection of CIN2+ was 7.7% in the VIA arm and 11.5% in the VILI arm (p = 0.10). There was no significant difference in the diagnostic performance of VIA and VILI for the detection of CIN2+. Sensitivity and specificity were 84.0% and 78.6%, respectively, for VIA and 84.2% and 76.4% for VILI. The positive and negative predictive values were 24.7% and 98.3% for VIA, and 31.7% and 97.4% for VILI. Among women with CD4+ count < 350, VILI had a significantly decreased specificity (66.2%) compared to VIA in the same group (83.9%, p = 0.02) and compared to VILI performed among women with CD4+ count ≥ 350 (79.7%, p = 0.02). VIA and VILI had similar diagnostic accuracy and rates of CIN2+ detection among HIV-infected women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: A number of studies have identified male involvement as an important factor affecting reproductive health outcomes, particularly in the areas of family planning, antenatal care, and HIV care. As access to cervical cancer screening programs improves in resource-poor settings, particularly through the integration of HIV and cervical cancer services, it is important to understand the role of male partner support in women's utilization of screening and treatment. METHODS: We administered an oral survey to 110 men in Western Kenya about their knowledge and attitudes regarding cervical cancer and cervical cancer screening. Men who had female partners eligible for cervical cancer screening were recruited from government health facilities where screening was offered free of charge. RESULTS: Specific knowledge about cervical cancer risk factors, prevention, and treatment was low. Only half of the men perceived their partners to be at risk for cervical cancer, and many reported that a positive screen would be emotionally upsetting. Nevertheless, all participants said they would encourage their partners to get screened. CONCLUSIONS: Future interventions should tailor cervical cancer educational opportunities towards men. Further research is needed among both men and couples to better understand barriers to male support for screening and treatment and to determine how to best involve men in cervical cancer prevention efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Follow-up care aims to provide surveillance with early detection of recurring cancers and to address treatment complications and other health issues in survivorship. It is assumed that follow-up care fulfills these aims, however little evidence supports routine surveillance detecting curable disease early enough to improve survival. Cancer survivors are a diverse patient population, suggesting that a single follow-up regimen may not meet all patients’ follow-up needs. Little is known about what effective follow-up care should include for head and neck cancer patients in a Canadian setting. Identification of subgroups of patients with specific needs and current practices would allow for hypotheses to be generated for enhancing follow-up care. OBJECTIVES: 1a) To describe the follow-up needs and preferences of head and neck cancer patients, 1b) to identify which patient characteristics predict needs and preferences, 1c) to evaluate how needs and preferences change over time, 2a) to describe follow-up care practices by physician visits and imaging tests, and 2b) to identify factors associated to the delivered follow-up care. METHODS: 1) 175 patients who completed treatment between 2012 and 2013 in Kingston and London, Ontario were recruited to participate in a prospective survey study on patients’ needs and preferences in follow-up care. Bivariate and multivariate analyses were employed to describe patient survey responses and to identify patient characteristics that predicted needs and preferences. 2) A retrospective cohort study of 3975 patients on routine follow-up from 2007 to 2015 was carried out using data linkages across registry and administrative databases to describe follow-up practices in Ontario by visits and tests. Multivariate regression analyses assessed factors related to follow-up care. RESULTS: 1) Patients’ needs and preferences were wide-ranging with several characteristics predicting needs and preferences (ORECOG=2.69 and ORAnxiety=1.13). Needs and preferences declined as patients transitioned into their second year of follow-up (p<0.05). 2) Wide variation in practices was found, with marked differences compared to existing consensus guidelines. Multiple factors were associated with follow-up practices (RRTumor site=0.73 and RRLHIN=1.47). CONCLUSIONS: Patient characteristics can be used to personalize care and guidelines are not informing practice. Future research should evaluate individualized approaches to follow-up care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.