966 resultados para brain evoked potentials
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Resumo:
This study examines the links between human perceptions, cognitive biases and neural processing of symmetrical stimuli. While preferences for symmetry have largely been examined in the context of disorders such as obsessive-compulsive disorder and autism spectrum disorders, we examine various these phenomena in non-clinical subjects and suggest that such preferences are distributed throughout the typical population as part of our cognitive and neural architecture. In Experiment 1, 82 young adults reported on the frequency of their obsessive-compulsive spectrum behaviors. Subjects also performed an emotional Stroop or variant of an Implicit Association Task (the OC-CIT) developed to assess cognitive biases for symmetry. Data not only reveal that subjects evidence a cognitive conflict when asked to match images of positive affect with asymmetrical stimuli, and disgust with symmetry, but also that their slowed reaction times when asked to do so were predicted by reports of OC behavior, particularly checking behavior. In Experiment 2, 26 participants were administered an oddball Event-Related Potential task specifically designed to assess sensitivity to symmetry as well as the OC-CIT. These data revealed that reaction times on the OC-CIT were strongly predicted by frontal electrode sites indicating faster processing of an asymmetrical stimulus (unparallel lines) relative to a symmetrical stimulus (parallel lines). The results point to an overall cognitive bias linking disgust with asymmetry and suggest that such cognitive biases are reflected in neural responses to symmetrical/asymmetrical stimuli.
Resumo:
The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.
Resumo:
Evidence suggests that the social cognition deficits prevalent in autism spectrum disorders (ASDs) are widely distributed in first degree and extended relatives. This ¿broader autism phenotype¿ (BAP) can be extended into non-clinical populations and show wide distributions of social behaviors such as empathy and social responsiveness ¿ with ASDs exhibiting these behaviors on the lower ends of the distributions. Little evidence has previously shown relationships between self-report measures of social cognition and more objective tasks such as face perception in functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). In this study, three specific hypotheses were addressed: a) increased social ability, as measured by an increased Empathy Quotient, decreased Social Responsiveness Scale (SRS-A) score, and increased Social Attribution Task score, will predict increased activation of the fusiform gyrus in response to faces as compared to houses; b) these same measures will predict N170 amplitude and latency showing decreased latency and increased amplitude for faces as compared to houses with increased social ability; c) increased amygdala volume will predict increased fusiform gyrus activation when viewing faces as compared to houses. Findings supported all of the hypotheses. Empathy scores significantly predicted both right FFG activation [F(1,20) = 4.811, p = .041, ß = .450, R2 = 0.20] and left FFG activation [F(1,20) = 7.70, p = .012, ß = .537, R2 = 0.29]. Based on ERP results increased right lateralization face-related N170 was significantly predicted by the EQ [F(1,54) = 6.94, p = .011, ß = .338, R2 = 0.11]. Finally, total amygdala volume significantly predicted right [F(1,20) = 7.217, p = .014, ß = .515, R2 = 0.27] and left [F(1,20) = 36.77, p < .001, ß = .805, R2 = 0.65] FFG activation. Consistent with the a priori hypotheses, traits attributed to the BAP can significantly predict neural responses to faces in a non-clinical population. This is consistent with the face processing deficits seen in ASDs. The findings presented here contribute to the extension of the BAP from unaffected relatives of individuals with ASDs to the general population. These findings also give continued evidence in support of a continuous distribution of traits found in psychiatric illnesses in place of a traditional, dichotomous ¿all-or-nothing¿ diagnostic framework of neurodevelopmental and neuropsychiatric disorders.
Resumo:
Negative biases in implicit self-evaluation are thought to be detrimental to subjective well-being and have been linked to various psychological disorders, including depression. An understanding of the neural processes underlying implicit self-evaluation in healthy subjects could provide a basis for the investigation of negative biases in depressed patients, the development of differential psychotherapeutic interventions, and the estimation of relapse risk in remitted patients. We thus studied the brain processes linked to implicit self-evaluation in 25 healthy subjects using event-related potential (ERP) recording during a self-relevant Implicit Association Test (sIAT). Consistent with a positive implicit self-evaluation in healthy subjects, they responded significantly faster to the congruent (self-positive mapping) than to the incongruent sIAT condition (self-negative mapping). Our main finding was a topographical ERP difference in a time window between 600 and 700 ms, whereas no significant differences between congruent and incongruent conditions were observed in earlier time windows. This suggests that biases in implicit self-evaluation are reflected only indirectly, in the additional recruitment of control processes needed to override the positive implicit self-evaluation of healthy subjects in the incongruent sIAT condition. Brain activations linked to these control processes can thus serve as an indirect measure for estimating biases in implicit self-evaluation. The sIAT paradigm, combined with ERP, could therefore permit the tracking of the neural processes underlying implicit self-evaluation in depressed patients during psychotherapy.
Transient rhythmic network activity in the somatosensory cortex evoked by distributed input in vitro
Resumo:
The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.
Resumo:
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.
Resumo:
Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. Electrical activity (cell firing, EEG) was monitored concurrently with microdialysis sampling of extracellular glutamate, glucose and lactate. Electrophysiological parameters (firing rate, serial correlation, field potential occurrences) were analyzed offline and compared to dialysate concentrations. In rats, these probes demonstrated an injury-induced suppression of neuronal firing (from a control level of 2.87 to 0.41 spikes/sec postinjury), which was associated with increases in extracellular glutamate and lactate, and decreases in glucose levels. When placed in human patients, the probes detected sparse and slowly firing cells (mean = 0.21 spike/sec), with most units (70%) exhibiting a lack of serial correlation in the spike train. In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.
Resumo:
PURPOSE: Transcranial Doppler sonography (TCD) is an established method for assessing changes in blood flow velocity (BFV) coupled to brain activity. Our objective was to investigate whether walking induces measurable changes in BFV in healthy subjects. METHODS: Changes in BFV in both middle cerebral arteries (MCAs) of 40 healthy adult subjects during walking on a treadmill were measured using bilateral TCD. In 8 of the 40 subjects, 1 anterior cerebral artery (ACA) was monitored simultaneously with the contralateral MCA. The percentage increase in BFV (BFVI%) compared with the baseline velocity (V(0)), the percentage decrease in BFV (BFVD%) compared with the V(0), and the normalized ACA-MCA ratio were analyzed. RESULTS: The overall mean (+/- standard deviation [SD]) V(0) was 59.9 +/- 11.6 cm/second in the left MCA and 60.1 +/- 12.9 cm/second in the right MCA. Women had higher V(0) values than men had. Walking evoked an initial mean overall BFVI% in both left (8.4 +/- 5.1%) and right MCAs (9.1 +/- 5.1%), followed by a decrease to below baseline values in 38 of 40 subjects. A statistically significant increase of the normalized ACA-MCA ratio was measured, indicating that changes in BFV in the ACA territory were coupled to brain activation during walking. CONCLUSIONS: The use of functional TCD showed different changes in BFV in the ACAs and MCAs during walking. This method may be an interesting tool for monitoring progress in patients with motor deficits of the legs, such as paresis.
Resumo:
BACKGROUND: Sedation protocols, including the use of sedation scales and regular sedation stops, help to reduce the length of mechanical ventilation and intensive care unit stay. Because clinical assessment of depth of sedation is labor-intensive, performed only intermittently, and interferes with sedation and sleep, processed electrophysiological signals from the brain have gained interest as surrogates. We hypothesized that auditory event-related potentials (ERPs), Bispectral Index (BIS), and Entropy can discriminate among clinically relevant sedation levels. METHODS: We studied 10 patients after elective thoracic or abdominal surgery with general anesthesia. Electroencephalogram, BIS, state entropy (SE), response entropy (RE), and ERPs were recorded immediately after surgery in the intensive care unit at Richmond Agitation-Sedation Scale (RASS) scores of -5 (very deep sedation), -4 (deep sedation), -3 to -1 (moderate sedation), and 0 (awake) during decreasing target-controlled sedation with propofol and remifentanil. Reference measurements for baseline levels were performed before or several days after the operation. RESULTS: At baseline, RASS -5, RASS -4, RASS -3 to -1, and RASS 0, BIS was 94 [4] (median, IQR), 47 [15], 68 [9], 75 [10], and 88 [6]; SE was 87 [3], 46 [10], 60 [22], 74 [21], and 87 [5]; and RE was 97 [4], 48 [9], 71 [25], 81 [18], and 96 [3], respectively (all P < 0.05, Friedman Test). Both BIS and Entropy had high variabilities. When ERP N100 amplitudes were considered alone, ERPs did not differ significantly among sedation levels. Nevertheless, discriminant ERP analysis including two parameters of principal component analysis revealed a prediction probability PK value of 0.89 for differentiating deep sedation, moderate sedation, and awake state. The corresponding PK for RE, SE, and BIS was 0.88, 0.89, and 0.85, respectively. CONCLUSIONS: Neither ERPs nor BIS or Entropy can replace clinical sedation assessment with standard scoring systems. Discrimination among very deep, deep to moderate, and no sedation after general anesthesia can be provided by ERPs and processed electroencephalograms, with similar P(K)s. The high inter- and intraindividual variability of Entropy and BIS precludes defining a target range of values to predict the sedation level in critically ill patients using these parameters. The variability of ERPs is unknown.
Resumo:
Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.
Resumo:
During the last twenty years a scientific basis for the anecdotal reports of an interaction between the brain and the immune system has established neuroimmunemodulation as a new field of study in the biomedical sciences. A means for the brain to exert a regulatory influence upon various lymphoid reactions has been well established by many investigators world wide. This dissertation was geared to test the central hypothesis that the immune system, in turn, produces signals which affect CNS functions. Specifically, it is shown through several different experiments, behavioral and electrophysiologic, that the immune modifiers interferon-alpha, gamma irradiation, cyclosporine-A and muramyl-dipeptide modify brain opioid related activities. Each agent attenuates naloxone-precipitated morphine withdrawal following either systemic or intracranial injection. Each agent also has effects upon either the acute antinociceptive or hypothermic activities of morphine. Finally, each agent modifies baseline evoked electrical activity of several brain areas of awake freely-behaving rats. Later studies demonstrate that muramyl-dipeptide modifies the unit firing rate of single neurons in the brain following either systemic or localized administration within the brain. These results suggest that the immune system produces signals which affect brain activity; and thus, support the contention of a bi-directional interaction between the brain and the immune system. ^
Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity
Resumo:
$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^