1000 resultados para brain commissure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. METHODS Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). RESULTS 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. CONCLUSION This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial provides no reliable evidence of benefit or harm and a larger trial would be needed to establish safety and effectiveness. TRIAL REGISTRATION This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN23625128.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Higher and lower cerebral perfusion pressure (CPP) thresholds have been proposed to improve brain tissue oxygen pressure (PtiO2) and outcome. We study the distribution of hypoxic PtiO2 samples at different CPP thresholds, using prospective multimodality monitoring in patients with severe traumatic brain injury. METHODS This is a prospective observational study of 22 severely head injured patients admitted to a neurosurgical critical care unit from whom multimodality data was collected during standard management directed at improving intracranial pressure, CPP and PtiO2. Local PtiO2 was continuously measured in uninjured areas and snapshot samples were collected hourly and analyzed in relation to simultaneous CPP. Other variables that influence tissue oxygen availability, mainly arterial oxygen saturation, end tidal carbon dioxide, body temperature and effective hemoglobin, were also monitored to keep them stable in order to avoid non-ischemic hypoxia. RESULTS Our main results indicate that half of PtiO2 samples were at risk of hypoxia (defined by a PtiO2 equal to or less than 15 mmHg) when CPP was below 60 mmHg, and that this percentage decreased to 25% and 10% when CPP was between 60 and 70 mmHg and above 70 mmHg, respectively (p < 0.01). CONCLUSION Our study indicates that the risk of brain tissue hypoxia in severely head injured patients could be really high when CPP is below the normally recommended threshold of 60 mmHg, is still elevated when CPP is slightly over it, but decreases at CPP values above it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials/Methods: Four patients who underwent whole-brain radiotherapy (WBRT) and simultaneous integrated boost (SIB) between August 2010 and February 2011 were included to this study. Their age were 60, 61, 65, and 70 years. Primary diagnosis was infiltrative ductal breast cancer in two patients, sigmoid adenocarcinoma in one, and transitional bladder cancer in the other patient. All patients underwent cranial surgery but not all of the metastases were operated in 2 patients. All but one (five metastases) patient presented with single brain metastasis. In 2 of the 4 patients, hippocampus was spared contralaterally due to vicinity of the lesions to unilateral hippocampus. Planning irradiation dose was 30 Gy in 10 fractions for WBRT and 40 Gy in 10 fractions for SIB over two weeks in three patients. In one patient, WBRT and boost doses were 36Gy and 50.4 Gy in 18 fractions. Our maximum dose constraints for hippocampus and eyes were 10 and 20 Gy, respectively. All organs were contoured manually. Hippocampi were contoured according to published guidelines, and 5-mm margin expansion was used for hippocampal avoidance volume. All plans utilized a field width of 2.5 cm. Modulation factors ranged between 2 and 3.5. A pitch of 0,287 was used for all patients. All plans were evaluated according to conformity index (CI), homogeneity index (HI), target coverage (TC), and mean normalized total dose (NTDmean). An alpha/beta ratio of 2 was assumed for the hippocampus.Results: Median planning target volume (PTV) for metastases was 17.47 cc.Median hippocampal avoidance volume was 14.73 cc (range, 9.25-16.18 cc). Median average hippocampaldose was 11.84 Gy (range, 10.14-21.01 Gy). PTVs were fully covered with more than 95% of the prescribed dose for all patients. With a median follow-up time of 6 months (range, 3-9 months), all patients were alive without recurrent intracranial disease. To date, no neurocognitive decline reported in any of the patients.Conclusions: Preclinical evidence suggests that hippocampal sparing during cranial irradiation may mitigate neurocognitive decline. Using HT, we significantly reduced the mean dose to the hippocampus without jeopardizing coverage of metastases and whole brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to Catani et al., we show that corticospinal pathways adhere via sharp turns to two local grid orientations; that our studies have three times the diffusion resolution of those compared; and that the noted technical concerns, including crossing angles, do not challenge the evidence of mathematically specific geometric structure. Thus, the geometric thesis gives the best account of the available evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Metastases are detected in 20% of patients with solid tumours at diagnosis and a further 30% after diagnosis. Radiation therapy (RT) has proven effective in bone (BM) and brain (BrM) metastases. The objective of this study was to analyze the variability of RT utilization rates in clinical practice and the accessibility to medical technology in our region. PATIENTS AND METHODS We reviewed the clinical records and RT treatment sheets of all patients undergoing RT for BM and/or BrM during 2007 in the 12 public hospitals in an autonomous region of Spain. Data were gathered on hospital type, patient type and RT treatment characteristics. Calculation of the rate of RT use was based on the cancer incidence and the number of RT treatments for BM, BrM and all cancer sites. RESULTS Out of the 9319 patients undergoing RT during 2007 for cancer at any site, 1242 (13.3%; inter-hospital range, 26.3%) received RT for BM (n = 744) or BrM (n = 498). These 1242 patients represented 79% of all RT treatments with palliative intent, and the most frequent primary tumours were in lung, breast, prostate or digestive system. No significant difference between BM and BrM groups were observed in: mean age (62 vs. 59 yrs, respectively); gender (approximately 64% male and 36% female in both); performance status (ECOG 0-1 in 70 vs. 71%); or mean distance from hospital (36 vs. 28.6 km) or time from consultation to RT treatment (13 vs. 14.3 days). RT regimens differed among hospitals and between patient groups: 10 × 300 cGy, 5 × 400 cGy and 1x800cGy were applied in 32, 27 and 25%, respectively, of BM patients, whereas 10 × 300cGy was used in 49% of BrM patients. CONCLUSIONS Palliative RT use in BM and BrM is high and close to the expected rate, unlike the global rate of RT application for all cancers in our setting. Differences in RT schedules among hospitals may reflect variability in clinical practice among the medical teams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To retrospectively assess the influence of prophylactic cranial irradiation (PCI) timing on brain relapse rates in patients treated with two different chemoradiotherapy (CRT) regimens for Stage IIIB non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: A cohort of 134 patients, with Stage IIIB NSCLC in recursive partitioning analysis Group 1, was treated with PCI (30 Gy at 2 Gy/fr) following one of two CRT regimens. Regimen 1 (n = 58) consisted of three cycles of induction chemotherapy (ICT) followed by concurrent CRT (C-CRT). Regimen 2 (n = 76) consisted of immediate C-CRT during thoracic radiotherapy. RESULTS: At a median follow-up of 27.6 months (range, 7.2-40.4), 65 patients were alive. Median, progression-free, and brain metastasis-free survival (BMFS) times for the whole study cohort were 23.4, 15.4, and 23.0 months, respectively. Median survival time and the 3-year survival rate for regimens 1 and 2 were 19.3 vs. 26.1 months (p = 0.001) and 14.4% vs. 34.4% (p < .001), respectively. Median time from the initiation of primary treatment to PCI was 123.2 (range, 97-161) and 63.4 (range, 55-74) days for regimens 1 and 2, respectively (p < 0.001). Overall, 11 (8.2%) patients developed brain metastasis (BM) during the follow-up period: 8 (13.8%) in regimen 1 and 3 (3.9%) in regimen 2 (p = 0.03). Only 3 (2.2%) patients developed BM at the site of first failure, and for 2 of them, it was also the sole site of recurrence. Median BMFS for regimens 1 and 2 were 17.4 (13.5-21.3) vs. 26.0 (22.9-29.1 months), respectively (p < 0.001). CONCLUSION: These results suggest that in Stage IIIB NSCLC patients treated with PCI, lower BM incidence and longer survival rates result from immediate C-CRT rather than ITC-first regimens. This indicates the benefit of earlier PCI use without delay because of induction protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: A substantial body of evidence supports the use of intensive insulin therapy in general critical care practice, particularly in surgical intensive care unit patients. The impact of intensive insulin therapy on the outcome of critically ill neurological patients, however, is still controversial. While avoidance of hyperglycemia is recommended in neurointensive care, no recommendations exist regarding the optimal target for systemic glucose control after severe brain injury. RECENT FINDINGS: An increase in brain metabolic demand leading to a deficiency in cerebral extracellular glucose has been observed in critically ill neurological patients and correlates with poor outcome. In this setting, a reduction of systemic glucose below 6 mmol/l with exogenous insulin has been found to exacerbate brain metabolic distress. Recent studies have confirmed these findings while showing intensive insulin therapy to have no substantial benefit on the outcome of critically ill neurological patients. SUMMARY: Questions persist regarding the optimal target for glucose control after severe brain injury. Further studies are needed to analyze the impact of intensive insulin therapy on brain glucose metabolism and outcome of critically ill neurological patients. According to the available evidence, a less restrictive target for systemic glucose control (6-10 mmol/l) may be more appropriate.