510 resultados para bk: Swahili
Resumo:
bk. 2
Resumo:
bk. 1
Resumo:
Acknowledgements We would like to thank the staff of the animal facility for their support and care for our animals. Funding was provided by the Wellcome Trust (102705) and Medical Research Council (UK) (MR/J004820/1) and a University of Aberdeen Studentship to BK.
Resumo:
Experiments were performed on uteri from estrogen-primed female rats. Bradykinin (BK) (10−8 M) significantly augmented biosynthesis of prostaglandin F2 α (PGF2α) and prostaglandin E2 (PGE2), and this synthesis was completely blocked by NG-monomethyl l-arginine (NMMA) (300 μM), a competitive inhibitor of nitric oxide synthase (NOS). Blockade of prostaglandin synthesis by indomethacin caused rapid dissipation of isometric developed tension (IDT) induced by BK. Blockade of NOS with NMMA had similar but less marked effects. Combining the two inhibitors produced an even more rapid decay in IDT, suggesting that BK-induced NO release maintains IDT by release of prostanoids. The decline of frequency of contraction (FC) was not significantly altered by either indomethacin or NMMA but was markedly accelerated by combination of the inhibitors, which suggests that PGs maintain FC and therefore FC decline is accelerated only when PG production is blocked completely by combination of the two inhibitors of PG synthesis. The increase in IDT induced by oxytocin was unaltered by indomethacin, NMMA or their combination indicating that neither NO nor PGs are involved in the contractions induced by oxytocin. However, the decline in FC with time was significantly reduced by the inhibitor of NOS, NMMA, suggesting that FC decay following oxytocin is caused by NO released by the contractile process. In the case of PGF2α, NMMA resulted in increased initial IDT and FC. The decline in FC was rapid and dramatically inhibited by NMMA. Receptor-mediated contraction by BK, oxytocin, and PGF2α is modulated by NO that maintains IDT by releasing PGs but reduces IDT and FC via cyclic GMP.
Resumo:
The vast majority of the known biological effects of the renin–angiotensin system are mediated by the type-1 (AT1) receptor, and the functions of the type-2 (AT2) receptor are largely unknown. We investigated the role of the AT2 receptor in the vascular and renal responses to physiological increases in angiotensin II (ANG II) in mice with targeted deletion of the AT2 receptor gene. Mice lacking the AT2 receptor (AT2-null mice) had slightly elevated systolic blood pressure (SBP) compared with that of wild-type (WT) control mice (P < 0.0001). In AT2-null mice, infusion of ANG II (4 pmol/kg/min) for 7 days produced a marked and sustained increase in SBP [from 116 ± 0.5 to 208 ± 1 mmHg (P < 0.0001) (1 mmHg = 133 Pa)] and reduction in urinary sodium excretion (UNaV) [from 0.6 ± 0.01 to 0.05 ± 0.002 mM/day (P < 0.0001)] whereas neither SBP nor UNaV changed in WT mice. AT2-null mice had low basal levels of renal interstitial fluid bradykinin (BK), and cyclic guanosine 3′,5′-monophosphate, an index of nitric oxide production, compared with WT mice. In WT mice, dietary sodium restriction or ANG II infusion increased renal interstitial fluid BK, and cyclic guanosine 3′,5′-monophosphate by ≈4-fold (P < 0.0001) whereas no changes were observed in AT2-null mice. These results demonstrate that the AT2 receptor is necessary for normal physiological responses of BK and nitric oxide to ANG II. Absence of the AT2 receptor leads to vascular and renal hypersensitivity to ANG II, including sustained antinatriuresis and hypertension. These results strongly suggest that the AT2 receptor plays a counterregulatory protective role mediated via BK and nitric oxide against the antinatriuretic and pressor actions of ANG II.
Resumo:
By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage.
Resumo:
The hemagglutination inhibition antibody titers against the JC and BK polyoma viruses (JCV and BKV, respectively) are significantly elevated in individuals exhibiting "rogue" cells among their cultured lymphocytes. However, the elevation is so much greater with respect to JCV that the BKV elevation could readily be explained by cross reactivity to the capsid protein of these two closely related viruses. The JCV exhibits high sequence homology with the simian papovavirus, simian virus 40 (SV40), and inoculation of human fetal brain cells with JCV produces polyploidy and chromosomal damage very similar to that produced by SV40. We suggest, by analogy with the effects of SV40, that these changes are due to the action of the viral large tumor antigen, a pluripotent DNA binding protein that acts in both transcription and replication. The implications of these findings for oncogenesis are briefly discussed.
Resumo:
A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.