719 resultados para atomicity violation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chart of control of Hotelling T2 has been the main statistical device used in monitoring multivariate processes. Currently the technological development of control systems and automation enabled a high rate of collection of information of the production systems in very short time intervals, causing a dependency between the results of observations. This phenomenon known as auto correlation causes in the statistical control of the multivariate processes a high rate of false alarms, prejudicing in the chart performance. This entails the violation of the assumption of independence and normality of the distribution. In this thesis we considered not only the correlation between two variables, but also the dependence between observations of the same variable, that is, auto correlation. It was studied by simulation, the bi variate case and the effect of auto correlation on the performance of the T2 chart of Hotelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

\ The biologic width is an essential dental space that always needs to be maintained to ensure periodontal health in any dental prosthetic restorations. An iatrogenic partial fixed prosthesis constructed in lower posterior teeth predisposed the development of subgingival caries, which induced violation of the biologic width in involved teeth, resulting in an uncontrolled inflammatory process and periodontal tissue destruction. This clinical report describes a periodontal surgical technique to recover a violated biologic width in lower posterior teeth, by crown lengthening procedure associated with free gingival graft procedure, to ensure the possibility to place a modified partial fixed prosthesis in treated area. The procedure applied to recover the biologic width was crown lengthening with some modifications, associated with modified partial fixed prosthesis to achieve health in treated area. The modified techniques in both surgical and prosthetic procedures were applied to compensate the contraindications to recover biologic width by osteotomy in lower posterior teeth. The result, after 4 years under periodic control, seems to achieve the projected goal. Treating a dental diseased area is necessary to diagnose, eliminate, or control all etiologic factors involved in the process. When the traditional methods are not effective to recover destructed tissues, an alternative, compensatory, and adaptive procedure may be applied to restore the sequelae of the disease, applying a restorative method that respects the biology of involved tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the mass splitting between the the top and bottom quarks in a technicolor scenario. The model proposed here contains a left-right electroweak gauge group. An extended technicolor group and mirror fermions are introduced. The top-bottom quark mass splitting turns out to be intimately connected to the breaking of the left-right gauge symmetry. Weak isospin violation occurs within the experimental limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that experimental data, coming from solar and atmospheric neutrino detectors and also from experiments which look for neutrino oscillations. strongly suggest that neutrinos must have a mass different from zero. However at least the solar and/or the atmospheric neutrino data can be related to new flavor changing interactions beyond the standard model instead to the finite mass of neutrinos. This new physics may induce i) extra effects in neutrino-matter interactions, ii) CP violation in pion and lepton decays and, iii) muonium to antimuonium transition. We give two examples of models in which all those effects arise even with strictly massless neutrinos: the 331 model and multi-Higgs doublet extension of the standard model (mHDM) with flavor changing neutral currents in the charged lepton sector. It means that in this kind of models if neutrino masses were eventually needed, they will be independent of the parameters of the new interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical model of linear-confined quarks is applied to obtain the flavor asymmetry of the nucleon sea. The model parametrization is fixed by the experimental available data, where a temperature parameter is used to fit the Gottfried sum rule violation. Results are presented for the ratios of light quark and antiquark distributions, d/u and (d) over bar/(u) over bar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From an analysis of the decay B-s(0)-> J/psi phi, we obtain the width difference between the light and heavy mass eigenstates Delta Gamma equivalent to(Gamma(L)-Gamma(H))=0.17 +/- 0.09(stat)+/- 0.02(syst) ps(-1) and the CP-violating phase phi(s)=-0.79 +/- 0.56(stat)(-0.01)(+0.14)(syst). Under the hypothesis of no CP violation (phi(s)equivalent to 0), we obtain 1/Gamma=tau/(B-s(0))=1.52 +/- 0.08(stat)(-0.03)(+0.01)(syst) ps and Delta Gamma=0.12(-0.10)(+0.08)(stat)+/- 0.02(syst) ps(-1). The data sample corresponds to an integrated luminosity of about 1.1 fb(-1) accumulated with the D0 detector at the Fermilab Tevatron collider. This is the first direct measurement of the CP-violating mixing phase in the B-s(0) system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topological charge screening in the QCD vacuum is found to provide crucial nonperturbative contributions to the short-distance expansion of the pseudoscalar (0-+) glueball correlator. The screening contributions enter the Wilson coefficients and are an indispensable complement to the direct instanton contributions. They restore consistency with the anomalous axial Ward identity and remedy several flaws in the 0-+ glueball sum rules caused by direct instantons in the absence of screening (lack of resonance signals, violation of the positivity bound and of the underlying low-energy theorem). The impact of the finite width of the instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also discussed. New predictions for the 0-+ glueball mass and decay constant are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a, statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up (u) and down (d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)