889 resultados para anion gap
Resumo:
Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).
Resumo:
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.
Resumo:
Voltage-dependent anion channels (VDACs) are major constituents of the outer mitochondrial membrane (OMM). These primary transporters of nucleotides, ions and metabolites mediate a substantial portion of the OMM molecular traffic. To study the native supramolecular organization of the VDAC, we have isolated, characterized and imaged OMMs from potato tubers. SDS-PAGE and mass spectrometry of OMMs revealed the presence of the VDAC isoforms POM34 and POM36, as well as the translocase of the OMM complex. Tubular two-dimensional crystals of the VDAC spontaneously formed after incubation of OMMs for two to three months at 4 degrees C. Transmission electron microscopy revealed an oblique lattice and unit cells housing six circular depressions arranged in a hexagon. Atomic force microscopy of freshly isolated OMMs demonstrated (i) the existence of monomers to tetramers, hexamers and higher oligomers of the VDAC and (ii) its spatial arrangement within the oligomers in the native membrane. We discuss the importance of the observed oligomerization for modulation of the VDAC function, for the binding of hexokinase and creatine kinase to the OMM and for mitochondria-mediated apoptosis.
Resumo:
INTRODUCTION: The use of vascular plug devices for the occlusion of high-flow lesions is a relatively new and successful procedure in peripheral and cardiopulmonary interventions. We report on the use and efficiency of the Amplatzer vascular plug in a small clinical series and discuss its potential for occlusion of large vessels and high-flow lesions in neurointerventions. METHODS: Between 2005 and 2007 four patients (mean age 38.5 years, range 16-62 years) were treated with the device, in three patients to achieve parent artery occlusion of the internal carotid artery, in one patient to occlude a high-flow arteriovenous fistula of the neck. The application, time to occlusion, and angiographic and clinical results and the follow-up were evaluated. RESULTS: Navigation, positioning and detachment of the device were satisfactory in all cases. No flow-related migration of the plug was seen. The cessation of flow was delayed by a mean of 10.5 min after deployment of the first device. In the procedures involving vessel sacrifice, two devices had to be deployed to achieve total occlusion. No patient experienced new neurological deficits; the 3-month follow-up revealed stable results. CONCLUSION: The Amplatzer vascular plug can be adapted for the treatment of high-flow lesions and parent artery occlusions in the head and neck. In this small series the use of the devices was uncomplicated and safe. The rigid and large delivery device and the delayed cessation of flow currently limit the device's use in neurointerventions.