964 resultados para alignment-free methods
Resumo:
Mode of access: Internet.
Resumo:
"Edited by H. Collison."
Resumo:
All of the numbered plates in the atlas are double plates, and thus are counted twice in the adjusted plate count.
Resumo:
"Errata" slip mounted on p. 1.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background: A new immunoassay for free light chain measurements has been reported to be useful for the diagnosis and monitoring of monoclonal light chain diseases and nonsecretory myeloma. We describe experience with and some potential pitfalls of the assay. Methods: The assay was assessed for precision, sample type and stability, recovery, and harmonization of results between two analyzers on which the reagents are used. Free-light-chain concentrations were measured in healthy individuals (to determine biological variation), patients with monoclonal gammopathy of undetermined significance, myeloma patients after autologous stem cell transplants, and patients with renal disease. Results: Analytical imprecision (CV) was 6-11% for kappa and A free-light-chain measurement and 16% for the calculated kappa/lambda ratio. Biological variation was generally insignificant compared with analytical variation. Despite the same reagent source, values were not completely harmonized between assay systems and may produce discordant free-light-chain ratios. In some patients with clinically stable myeloma, or post transplantation, or with monoclonal gammopathy of undetermined significance, free-light-chain concentration and ratio were within the population reference interval despite the presence of monoclonal intact immunoglobulin in serum. In other patients with monoclonal gammopathy of undetermined significance, values were abnormal although there was no clinical evidence of progression to multiple myeloma. Conclusions: The use of free-light-chain measurements alone cannot differentiate some groups of patients with monoclonal gammopathy from healthy individuals. As with the introduction of any new test, it is essential that more scientific data about use of this assay in different subject groups are available so that results can be interpreted with clinical certainty. (C) 2003 American Association for Clinical Chemistry.
Resumo:
Transporters of Ca2+ are potential drug targets and Ca2+ is a useful signal in the assessment of G-protein-coupled receptor activation. Assays involving the assessment of intracellular Ca2+ using microplate readers most often use Ca2+ indicators which do not exhibit a spectra shift on Ca2+ binding (e.g. fluo-3). Indicators that do exhibit a spectral shift upon Ca2+ binding (e.g. fura-2) offer potential advantages for the calibration of intracellular Ca2+ levels. However, experimental limitations may limit the use of ratiometric dyes in microplate readers capable of screening. In this study, we compared the assessment of intracellular Ca2+ in adherent breast cancer cells using ratiometric and nonratiometric Ca2+ indicators. Our results demonstrate that both fluo-3 and fura-2 detect ATP dose-dependent increases in intracellular Ca2+ in the MCF-7 breast cancer cell line and that some of the limitations in the use of fura-2 appear to be overcome by the use of glass bottom microplates. The calibrated intracellular Ca2+ levels derived using fura-2 are consistent with those from microscopy and cuvette-based studies. Fura-2 may be useful in microplate studies, where cell lines with different properties are compared or where screening treatments lead to differences in the number of cells or dye loading. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives-defined as a choice that makes preferred consequences more likely-requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the relevance of new information, relative to the initial ( and smaller) set of data on which the decision was based. We exemplify this seemingly simple situation using risk management of BSE. As an integral aspect of causal analysis under risk, the methods developed in this paper permit the addition of non-linear, hormetic dose-response models to the current set of regulatory defaults such as the linear, non-threshold models. This increase in the number of defaults is an important improvement because most of the variants of the precautionary principle require cost-benefit balancing. Specifically, increasing the set of causal defaults accounts for beneficial effects at very low doses. We also show and conclude that quantitative risk assessment dominates qualitative risk assessment, supporting the extension of the set of default causal models.
Resumo:
The objective was to improve the protocol that was used to obtain the first reported piglets from transferred vitrified and warmed zona-intact blastocysts. Blastocysts were collected from superovulated sows and gilts, centrifuged to polarize lipid, vitrified, warmed and cultured for 24 h or transferred immediately. Removing the zona pellucida after warming increased the number of cells in the surviving blastocysts (zona-free 60.8 +/- 4.3, zona-intact 39.1 +/- 2.8; P < 0.05). Thinning the zona pellucida produced similar results to zona removal. Changing the basal medium of the vitrification and warming solutions from modified PBS to phosphate buffered NCSU-23 increased the number of cells (44.7 +/- 2.2 versus 56.0 +/- 3.9, respectively; P < 0.05). Reducing the plunge temperature of the liquid nitrogen from - 196 degrees C to less than -204 degrees C improved the embryo survival rate (61.9% versus 82.9%, respectively; P < 0.05). These modifications were incorporated into the vitrification protocol that was used to vitrify and warm 105 blastocysts (that were subsequently transferred into four recipients). Three recipients became pregnant, farrowing three litters (average litter size, 5.3; 18.8% embryo survival in farrowing sows). Changing the warming protocol to using sucrose rather than ethylene glycol resulted in a trend towards improved embryo survival (73.5% versus 91.2%) but this was not statistically significant. Incorporating this modification, 203 blastocysts were vitrified, warmed and transferred into seven recipients. Five became pregnant and 36 fetuses were recovered (average litter size 7.2; 24.8% embryo survival in pregnant sows) at Day 40 of pregnancy. In conclusion, changes made to the vitrification protocol improved pregnancy rate and in vivo embryo survival compared to an earlier study using the original protocol. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Aim: Dipalmitoylphosphatidycholine (DPPC) is the characteristic and main constituent of surfactant. Adsorption of surfactant to epithelial surfaces may be important in the masking of receptors. The aims of the study were to (i) compare the quantity of free DPPC in the airways and gastric aspirates of children with gastroesophageal reflux disease (GORD) to those without and (ii) describe the association between free DPPC levels with airway cellular profile and capsaicin cough sensitivity. Methods: Children aged < 14 years were defined as 'coughers' if a history of cough in association with their GORD symptoms was elicited before gastric aspirates and nonbronchoscopic bronchoalveolar lavage (BAL) were obtained during elective flexible upper gastrointestinal endoscopy. GORD was defined as histological presence of reflux oesophagitis. Spirometry and capsaicin cough-sensitivity test was carried out in children aged > 6 years before the endoscopy. Results: Median age of the 68 children was 9 years (interquartile range (IQR) 7.2). Median DPPC level in BAL of children with cough (72.7 mu g/mL) was similar to noncoughers (88.5). There was also no significant difference in DPPC levels in both BAL and gastric aspirates of children classified according to presence of GORD. There was no correlation between DPPC levels and cellular counts or capsaicin cough-sensitivity outcome measures. Conclusion: We conclude that free DPPC levels in the airways and gastric aspirate is not influenced by presence of cough or GORD defined by histological presence of reflux oesophagitis. Whether quantification of adsorbed surfactant differs in these groups remain unknown. Free DPPC is unlikely to have a role in masking of airway receptors.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.